Visible to the public Biblio

Filters: Keyword is genetic algorithms  [Clear All Filters]
2023-01-13
Hosam, Osama.  2022.  Intelligent Risk Management using Artificial Intelligence. 2022 Advances in Science and Engineering Technology International Conferences (ASET). :1–9.
Effective information security risk management is essential for survival of any business that is dependent on IT. In this paper we present an efficient and effective solution to find best parameters for managing cyber risks using artificial intelligence. Genetic algorithm is use as it can provide our required optimization and intelligence. Results show that GA is professional in finding the best parameters and minimizing the risk.
Ankeshwarapu, Sunil, Sydulu, Maheswarapu.  2022.  Investigation on Security Constrained Optimal Power Flows using Meta-heuristic Techniques. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP). :1—6.
In this work different Meta-heuristic Techniques have been endeavored for addressing the Security Constrained Optimal Power Flow (SCOPF) and Optimal Power Flow (OPF)problem for minimizing the total fuel cost of the system. Here four meta-heuristics i.e. Genetic Algorithm (GA), Big Bang-Big Crunch Algorithm (BBBC), Shuffled Frog Leap Algorithm (SFLA) and Jaya Algorithms (JA) have been discussed. The problem was simulated on IEEE 30 bus standard test system under MATLAB environment. The simulation results show that JA outperforms GA, SFLA, and BBBC in terms of overall cost and computational time.
2022-12-02
Taleb, Sylia Mekhmoukh, Meraihi, Yassine, Mirjalili, Seyedali, Acheli, Dalila, Ramdane-Cherif, Amar, Gabis, Asma Benmessaoud.  2022.  Enhanced Honey Badger Algorithm for mesh routers placement problem in wireless mesh networks. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
This paper proposes an improved version of the newly developed Honey Badger Algorithm (HBA), called Generalized opposition Based-Learning HBA (GOBL-HBA), for solving the mesh routers placement problem. The proposed GOBLHBA is based on the integration of the generalized opposition-based learning strategy into the original HBA. GOBL-HBA is validated in terms of three performance metrics such as user coverage, network connectivity, and fitness value. The evaluation is done using various scenarios with different number of mesh clients, number of mesh routers, and coverage radius values. The simulation results revealed the efficiency of GOBL-HBA when compared with the classical HBA, Genetic Algorithm (GA), and Particle Swarm optimization (PSO).
2022-05-24
Qin, Yishuai, Xiao, Bing, Li, Yaodong, Yu, Jintao.  2021.  Structure adjustment of early warning information system based on timeliness. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2742–2747.
Aimed at the high requirement of timeliness in the process of information assurance, this paper describes the average time delay of information transmission in the system, and designs a timeliness index that can quantitatively describe the ability of early warning information assurance. In response to the problem that system capability cannot meet operational requirements due to enemy attacks, this paper analyzes the structure of the early warning information system, Early warning information complex network model is established, based on the timeliness index, a genetic algorithm based on simulated annealing with special chromosome coding is proposed.the algorithm is used to adjust the network model structure, the ability of early warning information assurance has been improved. Finally, the simulation results show the effectiveness of the proposed method.
2022-05-19
Sai Sruthi, Ch, Lohitha, M, Sriniketh, S.K, Manassa, D, Srilakshmi, K, Priyatharishini, M.  2021.  Genetic Algorithm based Hardware Trojan Detection. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1431–1436.
There is an increasing concern about possible hostile modification done to ICs, which are used in various critical applications. Such malicious modifications are referred to as Hardware Trojan. A novel procedure to detect these malicious Trojans using Genetic algorithm along with the logical masking technique which masks the Trojan module when embedded is presented in this paper. The circuit features such as transition probability and SCOAP are used as suitable parameters to identify the rare nodes which are more susceptible for Trojan insertion. A set of test patterns called optimal test patterns are generated using Genetic algorithm to claim that these test vectors are more feasible to detect the presence of Trojan in the circuit under test. The proposed methodologies are validated in accordance with ISCAS '85 and ISCAS '89 benchmark circuits. The experimental results proven that it achieves maximum Trigger coverage, Trojan coverage and is also able to successfully mask the inserted Trojan when it is triggered by the optimal test patterns.
Baniya, Babu Kaji.  2021.  Intrusion Representation and Classification using Learning Algorithm. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :279–284.
At present, machine learning (ML) algorithms are essential components in designing the sophisticated intrusion detection system (IDS). They are building-blocks to enhance cyber threat detection and help in classification at host-level and network-level in a short period. The increasing global connectivity and advancements of network technologies have added unprecedented challenges and opportunities to network security. Malicious attacks impose a huge security threat and warrant scalable solutions to thwart large-scale attacks. These activities encourage researchers to address these imminent threats by analyzing a large volume of the dataset to tackle all possible ranges of attack. In this proposed method, we calculated the fitness value of each feature from the population by using a genetic algorithm (GA) and selected them according to the fitness value. The fitness values are presented in hierarchical order to show the effectiveness of problem decomposition. We implemented Support Vector Machine (SVM) to verify the consistency of the system outcome. The well-known NSL-knowledge discovery in databases (KDD) was used to measure the performance of the system. From the experiments, we achieved a notable classification accuracies using a SVM of the current state of the art intrusion detection.
2022-01-10
Shoshina, Anastasiia V., Borzunov, Georgii I., Ivanova, Ekaterina Y..  2021.  Application of Bio-inspired Algorithms to the Cryptanalysis of Asymmetric Ciphers on the Basis of Composite Number. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2399–2403.
In some cases, the confidentiality of cryptographic algorithms used in digital communication is related to computational complexity mathematical problems, such as calculating the discrete logarithm, the knapsack problem, decomposing a composite number into prime divisors etc. This article describes the application of insolvability of factorization of a large composite number, and reviews previous work integer factorization using either the deterministic or the bio-inspired algorithms. This article focuses on the possibility of using bio-inspired methods to solve the problem of cryptanalysis of asymmetric encryption algorithms, which ones based on factorization of composite numbers. The purpose of this one is to reviewing previous work in integer factorization algorithms, developing a prototype of either the deterministic and the bio-inspired algorithm and the effectiveness of the developed algorithms and recommendations are made for future research paths.
2021-09-30
Zhang, Qingqing, Tang, Hongbo, You, Wei, Li, Yingle.  2020.  A Method for Constructing Heterogeneous Entities Pool in NFV Security Architecture Based on Mimic Defense. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1029–1033.
The characteristics of resource sharing and centralized deployment of network function virtualization (NFV) make the physical boundary under the traditional closed management mode disappear, bringing many new security threats to the network. To improve the security of the NFV network, this paper proposes a network function virtualization security architecture based on mimic defense. At the same time, to ensure the differences between heterogeneous entities, a genetic algorithm-based heterogeneous entities pool construction method is proposed. Simulation results show that this method can effectively guarantee the difference between heterogeneous entities and increase the difficulty of attackers.
2021-09-07
Abisoye, Opeyemi Aderiike, Shadrach Akanji, Oluwatobi, Abisoye, Blessing Olatunde, Awotunde, Joseph.  2020.  Slow Hypertext Transfer Protocol Mitigation Model in Software Defined Networks. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Distributed Denial of Service (DDoS) attacks have been one of the persistent forms of attacks on information technology infrastructure connected to a public network due to the ease of access to DDoS attack tools. Researchers have been able to develop several techniques to curb volumetric DDoS attacks which overwhelms the target with large number of request packets. However, compared to volumetric DDoS, low amount of research has been executed on mitigating slow DDoS. Data mining approaches and various Artificial Intelligence techniques have been proved by researchers to be effective for reduce DDoS attacks. This paper provides the scholarly community with slow DDoS attack detection techniques using Genetic Algorithm and Support Vector Machine aimed at mitigating slow DDoS attack in a Software-Defined Networking (SDN) environment simulated in GNS3. Genetic algorithm was employed to select the features which indicates the presence of an attack and also determine the appropriate regularization parameter, C, and gamma parameter for the Support Vector Machine classifier. Results obtained shows that the classifier had detection accuracy, Area Under Receiver Operating Curve (AUC), true positive rate, false positive rate and false negative rate of 99.89%, 99.89%, 99.95%, 0.18%, and 0.05% respectively. Also, the algorithm for subsequent implementation of the selective adaptive bubble burst mitigation mechanism was presented.
Huang, Weiqing, Peng, Xiao, Shi, Zhixin, Ma, Yuru.  2020.  Adversarial Attack against LSTM-Based DDoS Intrusion Detection System. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). :686–693.
Nowadays, machine learning is a popular method for DDoS detection. However, machine learning algorithms are very vulnerable under the attacks of adversarial samples. Up to now, multiple methods of generating adversarial samples have been proposed. However, they cannot be applied to LSTM-based DDoS detection directly because of the discrete property and the utility requirement of its input samples. In this paper, we propose two methods to generate DDoS adversarial samples, named Genetic Attack (GA) and Probability Weighted Packet Saliency Attack (PWPSA) respectively. Both methods modify original input sample by inserting or replacing partial packets. In GA, we evolve a set of modified samples with genetic algorithm and find the evasive variant from it. In PWPSA, we modify original sample iteratively and use the position saliency as well as the packet score to determine insertion or replacement order at each step. Experimental results on CICIDS2017 dataset show that both methods can bypass DDoS detectors with high success rate.
2021-08-31
Mahmood, Sabah Robitan, Hatami, Mohammad, Moradi, Parham.  2020.  A Trust-based Recommender System by Integration of Graph Clustering and Ant Colony Optimization. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :598–604.
Recommender systems (RSs) are intelligent systems to help e-commerce users to find their preferred items among millions of available items by considering the profiles of both users and items. These systems need to predict the unknown ratings and then recommend a set of high rated items. Among the others, Collaborative Filtering (CF) is a successful recommendation approach and has been utilized in many real-world systems. CF methods seek to predict missing ratings by considering the preferences of those users who are similar to the target user. A major task in Collaborative Filtering is to identify an accurate set of users and employing them in the rating prediction process. Most of the CF-based methods suffer from the cold-start issue which arising from an insufficient number of ratings in the prediction process. This is due to the fact that users only comment on a few items and thus CF methods faced with a sparse user-item matrix. To tackle this issue, a new collaborative filtering method is proposed that has a trust-aware strategy. The proposed method employs the trust relationships of users as additional information to help the CF tackle the cold-start issue. To this end, the proposed integrated trust relationships in the prediction process by using the Ant Colony Optimization (ACO). The proposed method has four main steps. The aim of the first step is ranking users based on their similarities to the target user. This step uses trust relationships and the available rating values in its process. Then in the second step, graph clustering methods are used to cluster the trust graph to group similar users. In the third step, the users are weighted based on their similarities to the target users. To this end, an ACO process is employed on the users' graph. Finally, those of top users with high similarity to the target user are used in the rating prediction process. The superiority of our method has been shown in the experimental results in comparison with well-known and state-of-the-art methods.
Ge, Chonghui, Sun, Jian, Sun, Yuxin, Di, Yunlong, Zhu, Yongjin, Xie, Linfeng, Zhang, Yingzhou.  2020.  Reversible Database Watermarking Based on Random Forest and Genetic Algorithm. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :239—247.
The advancing information technology is playing more and more important role in data mining of relational database.1 The transfer and sharing of databases cause the copyright-related security threats. Database watermarking technology can effectively solve the problem with copyright protection and traceability, which has been attracting researchers' attention. In this paper, we proposed a novel, robust and reversible database watermarking technique, named histogram shifting watermarking based on random forest and genetic algorithm (RF-GAHCSW). It greatly improves the watermark capacity by means of histogram width reduction and eliminates the impact of the prediction error attack. Meanwhile, random forest algorithm is used to select important attributes for watermark embedding, and genetic algorithm is employed to find the optimal secret key for the database grouping and determine the position of watermark embedding to improve the watermark capacity and reduce data distortion. The experimental results show that the robustness of RF-GAHCSW is greatly improved, compared with the original HSW, and the distortion has little effect on the usability of database.
2021-04-27
Himthani, P., Dubey, G. P., Sharma, B. M., Taneja, A..  2020.  Big Data Privacy and Challenges for Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :707—713.

The field of Big Data is expanding at an alarming rate since its inception in 2012. The excessive use of Social Networking Sites, collection of Data from Sensors for analysis and prediction of future events, improvement in Customer Satisfaction on Online S hopping portals by monitoring their past behavior and providing them information, items and offers of their interest instantaneously, etc had led to this rise in the field of Big Data. This huge amount of data, if analyzed and processed properly, can lead to decisions and outcomes that would be of great values and benefits to organizations and individuals. Security of Data and Privacy of User is of keen interest and high importance for individuals, industry and academia. Everyone ensure that their Sensitive information must be kept away from unauthorized access and their assets must be kept safe from security breaches. Privacy and Security are also equally important for Big Data and here, it is typical and complex to ensure the Privacy and Security, as the amount of data is enormous. One possible option to effectively and efficiently handle, process and analyze the Big Data is to make use of Machine Learning techniques. Machine Learning techniques are straightforward; applying them on Big Data requires resolution of various issues and is a challenging task, as the size of Data is too big. This paper provides a brief introduction to Big Data, the importance of Security and Privacy in Big Data and the various challenges that are required to overcome for applying the Machine Learning techniques on Big Data.

2021-03-29
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
Grochol, D., Sekanina, L..  2020.  Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
2021-03-09
Murali, R., Velayutham, C. S..  2020.  A Conceptual Direction on Automatically Evolving Computer Malware using Genetic and Evolutionary Algorithms. 2020 International Conference on Inventive Computation Technologies (ICICT). :226—229.

The widespread use of computing devices and the heavy dependence on the internet has evolved the cyberspace to a cyber world - something comparable to an artificial world. This paper focuses on one of the major problems of the cyber world - cyber security or more specifically computer malware. We show that computer malware is a perfect example of an artificial ecosystem with a co-evolutionary predator-prey framework. We attempt to merge the two domains of biologically inspired computing and computer malware. Under the aegis of proactive defense, this paper discusses the possibilities, challenges and opportunities in fusing evolutionary computing techniques with malware creation.

2021-03-01
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
2021-02-23
Savva, G., Manousakis, K., Ellinas, G..  2020.  Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
2021-02-16
Wu, J. M.-T., Srivastava, G., Pirouz, M., Lin, J. C.-W..  2020.  A GA-based Data Sanitization for Hiding Sensitive Information with Multi-Thresholds Constraint. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI). :29—34.
In this work, we propose a new concept of multiple support thresholds to sanitize the database for specific sensitive itemsets. The proposed method assigns a stricter threshold to the sensitive itemset for data sanitization. Furthermore, a genetic-algorithm (GA)-based model is involved in the designed algorithm to minimize side effects. In our experimental results, the GA-based PPDM approach is compared with traditional compact GA-based model and results clearly showed that our proposed method can obtain better performance with less computational cost.
2021-02-15
Av, N., Kumar, N. A..  2020.  Image Encryption Using Genetic Algorithm and Bit-Slice Rotation. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Cryptography is a powerful means of delivering information in a secure manner. Over the years, many image encryption algorithms have been proposed based on the chaotic system to protect the digital image against cryptography attacks. In chaotic encryption, it jumbles the image to vary the framework of the image. This makes it difficult for the attacker to retrieve the original image. This paper introduces an efficient image encryption algorithm incorporating the genetic algorithm, bit plane slicing and bit plane rotation of the digital image. The digital image is sliced into eight planes and each plane is well rotated to give a fully encrypted image after the application of the Genetic Algorithm on each pixel of the image. This makes it less prone to attacks. For decryption, we perform the operations in the reverse order. The performance of this algorithm is measured using various similarity measures like Structural Similarity Index Measure (SSIM). The results exhibit that the proposed scheme provides a stronger level of encryption and an enhanced security level.
Lakshmanan, S. K., Shakkeera, L., Pandimurugan, V..  2020.  Efficient Auto key based Encryption and Decryption using GICK and GDCK methods. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1102–1106.
Security services and share information is provided by the computer network. The computer network is by default there is not security. The Attackers can use this provision to hack and steal private information. Confidentiality, creation, changes, and truthful of data is will be big problems in the network. Many types of research have given many methods regarding this, from these methods Generating Initial Chromosome Key called Generating Dynamic Chromosome Key (GDCK), which is a novel approach. With the help of the RSA (Rivest Shamir Adleman) algorithm, GICK and GDCK have created an initial key. The proposed method has produced new techniques using genetic fitness function for the sender and receiver. The outcome of GICK and GDCK has been verified by NIST (National Institute of Standards Technology) tools and analyzes randomness of auto-generated keys with various methods. The proposed system has involved three examines; it has been yield better P-Values 6.44, 7.05, and 8.05 while comparing existing methods.
2021-02-08
Saleh, A. H., Yousif, A. S., Ahmed, F. Y. H..  2020.  Information Hiding for Text Files by Adopting the Genetic Algorithm and DNA Coding. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :220–223.
Hiding information is a process to hide data or include it in different digital media such as image, audio, video, and text. However, there are many techniques to achieve the process of hiding information in the image processing, in this paper, a new method has been proposed for hidden data mechanism (which is a text file), then a transposition cipher method has been employed for encryption completed. It can be used to build an encrypted text and also to increase security against possible attacks while sending it over the World Wide Web. A genetic algorithm has been affected in the adjustment of the encoded text and DNA in the creation of an encrypted text that is difficult to detect and then include in the image and that affected the image visual quality. The proposed method outperforms the state of arts in terms of efficiently retrieving the embedded messages. Performance evaluation has been recorded high visual quality scores for the (SNR (single to noise ratio), PSNR (peak single to noise ratio) and MSE (mean square error).
2021-01-20
Chaudhary, H., Sharma, A. K..  2020.  Hybrid Technique of Genetic Algorithm and Extended Diffie-Hellman Algorithm used for Intrusion Detection in Cloud. 2020 International Conference on Electrical and Electronics Engineering (ICE3). :513—516.

It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.

2020-12-14
Xu, S., Ouyang, Z., Feng, J..  2020.  An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.
Dong, D., Ye, Z., Su, J., Xie, S., Cao, Y., Kochan, R..  2020.  A Malware Detection Method Based on Improved Fireworks Algorithm and Support Vector Machine. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :846–851.
The increasing of malwares has presented a serious threat to the security of computer systems in recent years. Traditional signature-based anti-virus systems are not able to detect metamorphic and previously unseen malwares and it inspires people to use machine learning methods such as Naive Bayes and Decision Tree to identity malicious executables. Among these methods, detecting malwares by using Support Vector Machine (SVM) is one of the most effective approaches. However, the parameters of SVM have serious impacts on its classification performance. In order to find the optimal parameter combination and avoid the problem of falling into local optimal solution, many methods based on evolutionary algorithms are proposed, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and others. But these algorithms still face the problem of being trapped into local solution spaces in different degree. In this paper, an improved fireworks algorithm is presented and applied to search parameters of SVM: penalty factor c and kernel function parameter g. To research the performance of the proposed algorithm, numeric experiments are made and compared with some typical algorithms, the experimental results demonstrate it outperforms other algorithms.