Biblio
The Software Defined Networking paradigm has enabled dynamic configuration and control of large networks. Although the division of the control and data planes on networks has lead to dynamic reconfigurability of large networks, finding the minimal and optimal set of controllers that can adapt to the changes in the network has proven to be a challenging problem. Recent research tends to favor small solution sets with a focus on either propagation latency or controller load distribution, and struggles to find large balanced solution sets. In this paper, we propose a multi-objective genetic algorithm based approach to the controller placement problem that minimizes inter-controller latency, load distribution and the number of controllers with fitness sharing. We demonstrate that the proposed approach provides diverse and adaptive solutions to real network architectures such as the United States backbone and Japanese backbone networks. We further discuss the relevance and application of a diversity focused genetic algorithm for a moving target defense security model.
Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).
Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.
Embry-Riddle Aeronautical University (ERAU) is working with the Air Force Research Lab (AFRL) to develop a distributed multi-layer autonomous UAS planning and control technology for gathering intelligence in Anti-Access Area Denial (A2/AD) environments populated by intelligent adaptive adversaries. These resilient autonomous systems are able to navigate through hostile environments while performing Intelligence, Surveillance, and Reconnaissance (ISR) tasks, and minimizing the loss of assets. Our approach incorporates artificial life concepts, with a high-level architecture divided into three biologically inspired layers: cyber-physical, reactive, and deliberative. Each layer has a dynamic level of influence over the behavior of the agent. Algorithms within the layers act on a filtered view of reality, abstracted in the layer immediately below. Each layer takes input from the layer below, provides output to the layer above, and provides direction to the layer below. Fast-reactive control systems in lower layers ensure a stable environment supporting cognitive function on higher layers. The cyber-physical layer represents the central nervous system of the individual, consisting of elements of the vehicle that cannot be changed such as sensors, power plant, and physical configuration. On the reactive layer, the system uses an artificial life paradigm, where each agent interacts with the environment using a set of simple rules regarding wants and needs. Information is communicated explicitly via message passing and implicitly via observation and recognition of behavior. In the deliberative layer, individual agents look outward to the group, deliberating on efficient resource management and cooperation with other agents. Strategies at all layers are developed using machine learning techniques such as Genetic Algorithm (GA) or NN applied to system training that takes place prior to the mission.
Interval uncertainty can cause uncontrollable variations in the objective and constraint values, which could seriously deteriorate the performance or even change the feasibility of the optimal solutions. Robust optimization is to obtain solutions that are optimal and minimally sensitive to uncertainty. In this paper, a sequential multi-objective robust optimization (MORO) approach based on support vector machines (SVM) is proposed. Firstly, a sequential optimization structure is adopted to ease the computational burden. Secondly, SVM is used to construct a classification model to classify design alternatives into feasible or infeasible. The proposed approach is tested on a numerical example and an engineering case. Results illustrate that the proposed approach can reasonably approximate solutions obtained from the existing sequential MORO approach (SMORO), while the computational costs are significantly reduced compared with those of SMORO.
Recommender system is to suggest items that might be interest of the users in social networks. Collaborative filtering is an approach that works based on similarity and recommends items liked by other similar users. Trust model adopts users' trust network in place of similarity. Multi-faceted trust model considers multiple and heterogeneous trust relationship among the users and recommend items based on rating exist in the network of trustees of a specific facet. This paper applies genetic algorithm to estimate parameters of multi-faceted trust model, in which the trust weights are calculated based on the ratings and the trust network for each facet, separately. The model was built on Epinions data set that includes consumers' opinion, rating for items and the web of trust network. It was used to predict users' rating for items in different facets and root mean squared of prediction error (RMSE) was considered as a measure of performance. Empirical evaluations demonstrated that multi-facet models improve performance of the recommender system.
Metaheuristic search technique is one of the advance approach when compared with traditional heuristic search technique. To select one option among different alternatives is not hard to get but really hard is give assurance that being cost effective. This hard problem is solved by the meta-heuristic search technique with the help of fitness function. Fitness function is a crucial metrics or a measure which helps in deciding which solution is optimal to choose from available set of test sets. This paper discusses hill climbing, simulated annealing, tabu search, genetic algorithm and particle swarm optimization techniques in detail explaining with the help of the algorithm. If metaheuristic search techniques combine some of the security testing methods, it would result in better searching technique as well as secure too. This paper primarily focusses on the metaheuristic search techniques.
Genetic Algorithms are group of mathematical models in computational science by exciting evolution in AI techniques nowadays. These algorithms preserve critical information by applying data structure with simple chromosome recombination operators by encoding solution to a specific problem. Genetic algorithms they are optimizer, in which range of problems applied to it are quite broad. Genetic Algorithms with its global search includes basic principles like selection, crossover and mutation. Data structures, algorithms and human brain inspiration are found for classification of data and for learning which works using Neural Networks. Artificial Intelligence (AI) it is a field, where so many tasks performed naturally by a human. When AI conventional methods are used in a computer it was proved as a complicated task. Applying Neural Networks techniques will create an internal structure of rules by which a program can learn by examples, to classify different inputs than mining techniques. This paper proposes a phishing websites classifier using improved polynomial neural networks in genetic algorithm.
We propose to use a genetic algorithm to evolve novel reconfigurable hardware to implement elliptic curve cryptographic combinational logic circuits. Elliptic curve cryptography offers high security-level with a short key length making it one of the most popular public-key cryptosystems. Furthermore, there are no known sub-exponential algorithms for solving the elliptic curve discrete logarithm problem. These advantages render elliptic curve cryptography attractive for incorporating in many future cryptographic applications and protocols. However, elliptic curve cryptography has proven to be vulnerable to non-invasive side-channel analysis attacks such as timing, power, visible light, electromagnetic, and acoustic analysis attacks. In this paper, we use a genetic algorithm to address this vulnerability by evolving combinational logic circuits that correctly implement elliptic curve cryptographic hardware that is also resistant to simple timing and power analysis attacks. Using a fitness function composed of multiple objectives - maximizing correctness, minimizing propagation delays and minimizing circuit size, we can generate correct combinational logic circuits resistant to non-invasive, side channel attacks. To the best of our knowledge, this is the first work to evolve a cryptography circuit using a genetic algorithm. We implement evolved circuits in hardware on a Xilinx Kintex-7 FPGA. Results reveal that the evolutionary algorithm can successfully generate correct, and side-channel resistant combinational circuits with negligible propagation delay.
In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.
Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.
A self-adaptive system (SAS) can reconfigure to adapt to potentially adverse conditions that can manifest in the environment at run time. However, the SAS may not have been explicitly developed with such conditions in mind, thereby requiring additional configuration states or updates to the requirements specification for the SAS to provide assurance that it continually satisfies its requirements and delivers acceptable behavior. By discovering both adverse environmental conditions and the SAS configuration states that can mitigate those conditions at design time, an SAS can be hardened against uncertainty prior to deployment, effectively extending its lifetime. This paper introduces two search-based techniques, Ragnarok and Valkyrie, for hardening an SAS against uncertainty. Ragnarok automatically discovers adverse conditions that negatively impact an SAS by searching for environmental conditions that explicitly cause requirements violations. Valkyrie then searches for SAS configurations that improve requirements satisficement throughout execution in response to discovered adverse environmental conditions. Together, these techniques can be used to improve the design and implementation of an SAS. We apply each technique to an industry-provided remote data mirroring application that can self-reconfigure in response to unknown or adverse conditions, such as network message delays, network link failures, and sensor noise.
Nowadays, many computer vision techniques are applied to practical applications, such as surveillance and facial recognition systems. Some of such applications focus on information extraction from the human beings. However, people may feel psychological stress about recording their personal information, such as a face, behavior, and cloth. Therefore, privacy protection of the images and videos is necessary. Specifically, the detection and tracking methods should be used on the privacy protected images. For this purpose, there are some easy methods, such as blurring and pixelating, and they are often used in news programs etc. Because such methods just average pixel values, no important feature for the detection and tracking is left. Hence, the preprocessed images are unuseful. In order to solve this problem, we have proposed shuffle filter and a multi-view face tracking method with a genetic algorithm (GA). The filter protects the privacy by changing pixel locations, and the color information can be preserved. Since the color information is left, the tracking can be achieved by a basic template matching with histogram. Moreover, by using GA instead of sliding window when the subject in the image is searched, it can search more efficiently. However, the tracking accuracy is still low and the preprocessing time is large. Therefore, improving them is the purpose in this research. In the experiment, the improved method is compared with our previous work, CAMSHIFT, an online learning method, and a face detector. The results indicate that the accuracy of the proposed method is higher than the others.
As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.
Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.
SDN is a promising architecture that can overcome the challenges facing traditional networks. SDN enables administrator/operator to build a simpler, customizable, programmable, and manageable network. In software-defined WAN deployments, multiple controllers are often needed, and the location of these controllers affect various metrics. Since these metrics conflict each other, this problem can be regarded as a multi-objective combinatorial optimization problem (MOCO). A particular efficient method to solve a typical MOCO, which is used in the relevant literature, is to find the actual Pareto frontier first and give it to the decision maker to select the most appropriate solution(s). In small and medium sized combinatorial problems, evaluating the whole search space and find the exact Pareto frontier may be possible in a reasonable time. However, for large scale problems whose search spaces involves thousands of millions of solutions, the exhaustive evaluation needs a considerable amount of computational efforts and memory used. An effective alternative mechanism is to estimate the original Pareto frontier within a relatively small algorithm's runtime and memory consumption. Heuristic methods, which have been studied well in the literature, proved to be very effective methods in this regards. The second version of the Non-dominated Sorting Genetic Algorithm, called NSGA-II has been carried out quite well on different discrete and continuous optimization problems. In this paper, we adapt this efficient mechanism for a new presented multi-objective model of the control placement problem [7]. The results of implementing the adapted algorithm carried out on the Internet2 OS3E network run on MATLAB 2013b confirmed its effectiveness.
This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.
In a modern software system, when a program fails, a crash report which contains an execution trace would be sent to the software vendor for diagnosis. A crash report which corresponds to a failure could be caused by multiple types of faults simultaneously. Many large companies such as Baidu organize a team to analyze these failures, and classify them into multiple labels (i.e., multiple types of faults). However, it would be time-consuming and difficult for developers to manually analyze these failures and come out with appropriate fault labels. In this paper, we automatically classify a failure into multiple types of faults, using a composite algorithm named MLL-GA, which combines various multi-label learning algorithms by leveraging genetic algorithm (GA). To evaluate the effectiveness of MLL-GA, we perform experiments on 6 open source programs and show that MLL-GA could achieve average F-measures of 0.6078 to 0.8665. We also compare our algorithm with Ml.KNN and show that on average across the 6 datasets, MLL-GA improves the average F-measure of MI.KNN by 14.43%.
Security is becoming a major concern in computing. New techniques are evolving every day; one of these techniques is Hash Visualization. Hash Visualization uses complex random generated images for security, these images can be used to hide data (watermarking). This proposed new technique improves hash visualization by using genetic algorithms. Genetic algorithms are a search optimization technique that is based on the evolution of living creatures. The proposed technique uses genetic algorithms to improve hash visualization. The used genetic algorithm was away faster than traditional previous ones, and it improved hash visualization by evolving the tree that was used to generate the images, in order to obtain a better and larger tree that will generate images with higher security. The security was satisfied by calculating the fitness value for each chromosome based on a specifically designed algorithm.
Mobile ad hoc network (MANET) is a self-created and self organized network of wireless mobile nodes. Due to special characteristics of these networks, security issue is a difficult task to achieve. Hence, applying current intrusion detection techniques developed for fixed networks is not sufficient for MANETs. In this paper, we proposed an approach based on genetic algorithm (GA) and artificial immune system (AIS), called GAAIS, for dynamic intrusion detection in AODV-based MANETs. GAAIS is able to adapting itself to network topology changes using two updating methods: partial and total. Each normal feature vector extracted from network traffic is represented by a hypersphere with fix radius. A set of spherical detector is generated using NicheMGA algorithm for covering the nonself space. Spherical detectors are used for detecting anomaly in network traffic. The performance of GAAIS is evaluated for detecting several types of routing attacks simulated using the NS2 simulator, such as Flooding, Blackhole, Neighbor, Rushing, and Wormhole. Experimental results show that GAAIS is more efficient in comparison with similar approaches.