Visible to the public Biblio

Filters: Keyword is genetic algorithms  [Clear All Filters]
2019-12-16
Lin, Jerry Chun-Wei, Zhang, Yuyu, Chen, Chun-Hao, Wu, Jimmy Ming-Tai, Chen, Chien-Ming, Hong, Tzung-Pei.  2018.  A Multiple Objective PSO-Based Approach for Data Sanitization. 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI). :148–151.
In this paper, a multi-objective particle swarm optimization (MOPSO)-based framework is presented to find the multiple solutions rather than a single one. The presented grid-based algorithm is used to assign the probability of the non-dominated solution for next iteration. Based on the designed algorithm, it is unnecessary to pre-define the weights of the side effects for evaluation but the non-dominated solutions can be discovered as an alternative way for data sanitization. Extensive experiments are carried on two datasets to show that the designed grid-based algorithm achieves good performance than the traditional single-objective evolution algorithms.
Wu, Jimmy Ming-Tai, Chun-Wei Lin, Jerry, Djenouri, Youcef, Fournier-Viger, Philippe, Zhang, Yuyu.  2019.  A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. 2019 IEEE Congress on Evolutionary Computation (CEC). :1461–1467.
In recent decades, data protection (PPDM), which not only hides information, but also provides information that is useful to make decisions, has become a critical concern. We present a sanitization algorithm with the consideration of four side effects based on multi-objective PSO and hierarchical clustering methods to find optimized solutions for PPDM. Experiments showed that compared to existing approaches, the designed sanitization algorithm based on the hierarchical clustering method achieves satisfactory performance in terms of hiding failure, missing cost, and artificial cost.
2019-04-29
Champagne, Samuel, Makanju, Tokunbo, Yao, Chengchao, Zincir-Heywood, Nur, Heywood, Malcolm.  2018.  A Genetic Algorithm for Dynamic Controller Placement in Software Defined Networking. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1632–1639.

The Software Defined Networking paradigm has enabled dynamic configuration and control of large networks. Although the division of the control and data planes on networks has lead to dynamic reconfigurability of large networks, finding the minimal and optimal set of controllers that can adapt to the changes in the network has proven to be a challenging problem. Recent research tends to favor small solution sets with a focus on either propagation latency or controller load distribution, and struggles to find large balanced solution sets. In this paper, we propose a multi-objective genetic algorithm based approach to the controller placement problem that minimizes inter-controller latency, load distribution and the number of controllers with fitness sharing. We demonstrate that the proposed approach provides diverse and adaptive solutions to real network architectures such as the United States backbone and Japanese backbone networks. We further discuss the relevance and application of a diversity focused genetic algorithm for a moving target defense security model.

2018-11-19
Yang, M., Wang, A., Sun, G., Liang, S., Zhang, J., Wang, F..  2017.  Signal Distribution Optimization for Cabin Visible Light Communications by Using Weighted Search Bat Algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1025–1030.
With increasing demand for travelling, high-quality network service is important to people in vehicle cabins. Visible light communication (VLC) system is more appropriate than wireless local area network considering the security, communication speed, and narrow shape of the cabin. However, VLC exhibits technical limitations, such as uneven distribution of optical signals. In this regard, we propose a novel weight search bat algorithm (WSBA) to calculate a set of optimal power adjustment factors to reduce fluctuation in signal distributions. Simulation results show that the fairness of signal distribution in the cabin optimized by WSBA is better than that of the non-optimized signal distribution. Moreover, the coverage rate of WSBA is higher than that of genetic algorithm and particle swarm optimization.
Garcia, Dennis, Lugo, Anthony Erb, Hemberg, Erik, O'Reilly, Una-May.  2017.  Investigating Coevolutionary Archive Based Genetic Algorithms on Cyber Defense Networks. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1455–1462.
We introduce a new cybersecurity project named RIVALS. RIVALS will assist in developing network defense strategies through modeling adversarial network attack and defense dynamics. RIVALS will focus on peer-to-peer networks and use coevolutionary algorithms. In this contribution, we describe RIVALS' current suite of coevolutionary algorithms that use archiving to maintain progressive exploration and that support different solution concepts as fitness metrics. We compare and contrast their effectiveness by executing a standard coevolutionary benchmark (Compare-on-one) and RIVALS simulations on 3 different network topologies. Currently, we model denial of service (DOS) attack strategies by the attacker selecting one or more network servers to disable for some duration. Defenders can choose one of three different network routing protocols: shortest path, flooding and a peer-to-peer ring overlay to try to maintain their performance. Attack completion and resource cost minimization serve as attacker objectives. Mission completion and resource cost minimization are the reciprocal defender objectives. Our experiments show that existing algorithms either sacrifice execution speed or forgo the assurance of consistent results. rIPCA, our adaptation of a known coevolutionary algorithm named IPC A, is able to more consistently produce high quality results, albeit without IPCA's guarantees for results with monotonically increasing performance, without sacrificing speed.
2018-06-07
Appelt, D., Panichella, A., Briand, L..  2017.  Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :339–350.

Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).

2018-05-30
Alamaniotis, M., Tsoukalas, L. H., Bourbakis, N..  2017.  Anticipatory Driven Nodal Electricity Load Morphing in Smart Cities Enhancing Consumption Privacy. 2017 IEEE Manchester PowerTech. :1–6.

Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.

Shahriar, H., Bond, W..  2017.  Towards an Attack Signature Generation Framework for Intrusion Detection Systems. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :597–603.
Attacks on web services are major concerns and can expose organizations valuable information resources. Despite there are increasing awareness in secure programming, we still find vulnerabilities in web services. To protect deployed web services, it is important to have defense techniques. Signaturebased Intrusion Detection Systems (IDS) have gained popularity to protect applications against attacks. However, signature IDSs have limited number of attack signatures. In this paper, we propose a Genetic Algorithm (GA)-based attack signature generation approach and show its application for web services. GA algorithm has the capability of generating new member from a set of initial population. We leverage this by generating new attack signatures at SOAP message level to overcome the challenge of limited number of attack signatures. The key contributions include defining chromosomes and fitness functions. The initial results show that the GA-based IDS can generate new signatures and complement the limitation of existing web security testing tools. The approach can generate new attack signatures for injection, privilege escalation, denial of service and information leakage.
2018-05-02
Clifford, J., Garfield, K., Towhidnejad, M., Neighbors, J., Miller, M., Verenich, E., Staskevich, G..  2017.  Multi-layer model of swarm intelligence for resilient autonomous systems. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–4.

Embry-Riddle Aeronautical University (ERAU) is working with the Air Force Research Lab (AFRL) to develop a distributed multi-layer autonomous UAS planning and control technology for gathering intelligence in Anti-Access Area Denial (A2/AD) environments populated by intelligent adaptive adversaries. These resilient autonomous systems are able to navigate through hostile environments while performing Intelligence, Surveillance, and Reconnaissance (ISR) tasks, and minimizing the loss of assets. Our approach incorporates artificial life concepts, with a high-level architecture divided into three biologically inspired layers: cyber-physical, reactive, and deliberative. Each layer has a dynamic level of influence over the behavior of the agent. Algorithms within the layers act on a filtered view of reality, abstracted in the layer immediately below. Each layer takes input from the layer below, provides output to the layer above, and provides direction to the layer below. Fast-reactive control systems in lower layers ensure a stable environment supporting cognitive function on higher layers. The cyber-physical layer represents the central nervous system of the individual, consisting of elements of the vehicle that cannot be changed such as sensors, power plant, and physical configuration. On the reactive layer, the system uses an artificial life paradigm, where each agent interacts with the environment using a set of simple rules regarding wants and needs. Information is communicated explicitly via message passing and implicitly via observation and recognition of behavior. In the deliberative layer, individual agents look outward to the group, deliberating on efficient resource management and cooperation with other agents. Strategies at all layers are developed using machine learning techniques such as Genetic Algorithm (GA) or NN applied to system training that takes place prior to the mission.

2018-05-01
Xie, T., Zhou, Q., Hu, J., Shu, L., Jiang, P..  2017.  A Sequential Multi-Objective Robust Optimization Approach under Interval Uncertainty Based on Support Vector Machines. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :2088–2092.

Interval uncertainty can cause uncontrollable variations in the objective and constraint values, which could seriously deteriorate the performance or even change the feasibility of the optimal solutions. Robust optimization is to obtain solutions that are optimal and minimally sensitive to uncertainty. In this paper, a sequential multi-objective robust optimization (MORO) approach based on support vector machines (SVM) is proposed. Firstly, a sequential optimization structure is adopted to ease the computational burden. Secondly, SVM is used to construct a classification model to classify design alternatives into feasible or infeasible. The proposed approach is tested on a numerical example and an engineering case. Results illustrate that the proposed approach can reasonably approximate solutions obtained from the existing sequential MORO approach (SMORO), while the computational costs are significantly reduced compared with those of SMORO.

2018-03-26
Hosseinpourpia, M., Oskoei, M. A..  2017.  GA Based Parameter Estimation for Multi-Faceted Trust Model of Recommender Systems. 2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :160–165.

Recommender system is to suggest items that might be interest of the users in social networks. Collaborative filtering is an approach that works based on similarity and recommends items liked by other similar users. Trust model adopts users' trust network in place of similarity. Multi-faceted trust model considers multiple and heterogeneous trust relationship among the users and recommend items based on rating exist in the network of trustees of a specific facet. This paper applies genetic algorithm to estimate parameters of multi-faceted trust model, in which the trust weights are calculated based on the ratings and the trust network for each facet, separately. The model was built on Epinions data set that includes consumers' opinion, rating for items and the web of trust network. It was used to predict users' rating for items in different facets and root mean squared of prediction error (RMSE) was considered as a measure of performance. Empirical evaluations demonstrated that multi-facet models improve performance of the recommender system.

2018-02-02
Khari, M., Vaishali, Kumar, M..  2016.  Analysis of software security testing using metaheuristic search technique. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). :2147–2152.

Metaheuristic search technique is one of the advance approach when compared with traditional heuristic search technique. To select one option among different alternatives is not hard to get but really hard is give assurance that being cost effective. This hard problem is solved by the meta-heuristic search technique with the help of fitness function. Fitness function is a crucial metrics or a measure which helps in deciding which solution is optimal to choose from available set of test sets. This paper discusses hill climbing, simulated annealing, tabu search, genetic algorithm and particle swarm optimization techniques in detail explaining with the help of the algorithm. If metaheuristic search techniques combine some of the security testing methods, it would result in better searching technique as well as secure too. This paper primarily focusses on the metaheuristic search techniques.

2017-12-20
Gayathri, S..  2017.  Phishing websites classifier using polynomial neural networks in genetic algorithm. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–4.

Genetic Algorithms are group of mathematical models in computational science by exciting evolution in AI techniques nowadays. These algorithms preserve critical information by applying data structure with simple chromosome recombination operators by encoding solution to a specific problem. Genetic algorithms they are optimizer, in which range of problems applied to it are quite broad. Genetic Algorithms with its global search includes basic principles like selection, crossover and mutation. Data structures, algorithms and human brain inspiration are found for classification of data and for learning which works using Neural Networks. Artificial Intelligence (AI) it is a field, where so many tasks performed naturally by a human. When AI conventional methods are used in a computer it was proved as a complicated task. Applying Neural Networks techniques will create an internal structure of rules by which a program can learn by examples, to classify different inputs than mining techniques. This paper proposes a phishing websites classifier using improved polynomial neural networks in genetic algorithm.

2017-12-12
Poudel, B., Louis, S. J., Munir, A..  2017.  Evolving side-channel resistant reconfigurable hardware for elliptic curve cryptography. 2017 IEEE Congress on Evolutionary Computation (CEC). :2428–2436.

We propose to use a genetic algorithm to evolve novel reconfigurable hardware to implement elliptic curve cryptographic combinational logic circuits. Elliptic curve cryptography offers high security-level with a short key length making it one of the most popular public-key cryptosystems. Furthermore, there are no known sub-exponential algorithms for solving the elliptic curve discrete logarithm problem. These advantages render elliptic curve cryptography attractive for incorporating in many future cryptographic applications and protocols. However, elliptic curve cryptography has proven to be vulnerable to non-invasive side-channel analysis attacks such as timing, power, visible light, electromagnetic, and acoustic analysis attacks. In this paper, we use a genetic algorithm to address this vulnerability by evolving combinational logic circuits that correctly implement elliptic curve cryptographic hardware that is also resistant to simple timing and power analysis attacks. Using a fitness function composed of multiple objectives - maximizing correctness, minimizing propagation delays and minimizing circuit size, we can generate correct combinational logic circuits resistant to non-invasive, side channel attacks. To the best of our knowledge, this is the first work to evolve a cryptography circuit using a genetic algorithm. We implement evolved circuits in hardware on a Xilinx Kintex-7 FPGA. Results reveal that the evolutionary algorithm can successfully generate correct, and side-channel resistant combinational circuits with negligible propagation delay.

2017-12-04
Alejandre, F. V., Cortés, N. C., Anaya, E. A..  2017.  Feature selection to detect botnets using machine learning algorithms. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). :1–7.

In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.

2017-11-20
Paramathma, M. K., Devaraj, D., Reddy, B. S..  2016.  Artificial neural network based static security assessment module using PMU measurements for smart grid application. 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). :1–5.

Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.

2017-06-05
Fredericks, Erik M..  2016.  Automatically Hardening a Self-adaptive System Against Uncertainty. Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. :16–27.

A self-adaptive system (SAS) can reconfigure to adapt to potentially adverse conditions that can manifest in the environment at run time. However, the SAS may not have been explicitly developed with such conditions in mind, thereby requiring additional configuration states or updates to the requirements specification for the SAS to provide assurance that it continually satisfies its requirements and delivers acceptable behavior. By discovering both adverse environmental conditions and the SAS configuration states that can mitigate those conditions at design time, an SAS can be hardened against uncertainty prior to deployment, effectively extending its lifetime. This paper introduces two search-based techniques, Ragnarok and Valkyrie, for hardening an SAS against uncertainty. Ragnarok automatically discovers adverse conditions that negatively impact an SAS by searching for environmental conditions that explicitly cause requirements violations. Valkyrie then searches for SAS configurations that improve requirements satisficement throughout execution in response to discovered adverse environmental conditions. Together, these techniques can be used to improve the design and implementation of an SAS. We apply each technique to an industry-provided remote data mirroring application that can self-reconfigure in response to unknown or adverse conditions, such as network message delays, network link failures, and sensor noise.

2017-03-08
Sato, J., Akashi, T..  2015.  Evolutionary multi-view face tracking on pixel replaced image in video sequence. 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR). :322–327.

Nowadays, many computer vision techniques are applied to practical applications, such as surveillance and facial recognition systems. Some of such applications focus on information extraction from the human beings. However, people may feel psychological stress about recording their personal information, such as a face, behavior, and cloth. Therefore, privacy protection of the images and videos is necessary. Specifically, the detection and tracking methods should be used on the privacy protected images. For this purpose, there are some easy methods, such as blurring and pixelating, and they are often used in news programs etc. Because such methods just average pixel values, no important feature for the detection and tracking is left. Hence, the preprocessed images are unuseful. In order to solve this problem, we have proposed shuffle filter and a multi-view face tracking method with a genetic algorithm (GA). The filter protects the privacy by changing pixel locations, and the color information can be preserved. Since the color information is left, the tracking can be achieved by a basic template matching with histogram. Moreover, by using GA instead of sliding window when the subject in the image is searched, it can search more efficiently. However, the tracking accuracy is still low and the preprocessing time is large. Therefore, improving them is the purpose in this research. In the experiment, the improved method is compared with our previous work, CAMSHIFT, an online learning method, and a face detector. The results indicate that the accuracy of the proposed method is higher than the others.

Wang, J., Zhou, Y..  2015.  Multi-objective dynamic unit commitment optimization for energy-saving and emission reduction with wind power. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2074–2078.

As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.

Santra, N., Biswas, S., Acharyya, S..  2015.  Neural modeling of Gene Regulatory Network using Firefly algorithm. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON). :1–6.

Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.

Jalili, A., Ahmadi, V., Keshtgari, M., Kazemi, M..  2015.  Controller placement in software-defined WAN using multi objective genetic algorithm. 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI). :656–662.

SDN is a promising architecture that can overcome the challenges facing traditional networks. SDN enables administrator/operator to build a simpler, customizable, programmable, and manageable network. In software-defined WAN deployments, multiple controllers are often needed, and the location of these controllers affect various metrics. Since these metrics conflict each other, this problem can be regarded as a multi-objective combinatorial optimization problem (MOCO). A particular efficient method to solve a typical MOCO, which is used in the relevant literature, is to find the actual Pareto frontier first and give it to the decision maker to select the most appropriate solution(s). In small and medium sized combinatorial problems, evaluating the whole search space and find the exact Pareto frontier may be possible in a reasonable time. However, for large scale problems whose search spaces involves thousands of millions of solutions, the exhaustive evaluation needs a considerable amount of computational efforts and memory used. An effective alternative mechanism is to estimate the original Pareto frontier within a relatively small algorithm's runtime and memory consumption. Heuristic methods, which have been studied well in the literature, proved to be very effective methods in this regards. The second version of the Non-dominated Sorting Genetic Algorithm, called NSGA-II has been carried out quite well on different discrete and continuous optimization problems. In this paper, we adapt this efficient mechanism for a new presented multi-objective model of the control placement problem [7]. The results of implementing the adapted algorithm carried out on the Internet2 OS3E network run on MATLAB 2013b confirmed its effectiveness.

2017-02-21
A. Roy, S. P. Maity.  2015.  "On segmentation of CS reconstructed MR images". 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1-6.

This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.

2015-05-06
Xin Xia, Yang Feng, Lo, D., Zhenyu Chen, Xinyu Wang.  2014.  Towards more accurate multi-label software behavior learning. Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on. :134-143.

In a modern software system, when a program fails, a crash report which contains an execution trace would be sent to the software vendor for diagnosis. A crash report which corresponds to a failure could be caused by multiple types of faults simultaneously. Many large companies such as Baidu organize a team to analyze these failures, and classify them into multiple labels (i.e., multiple types of faults). However, it would be time-consuming and difficult for developers to manually analyze these failures and come out with appropriate fault labels. In this paper, we automatically classify a failure into multiple types of faults, using a composite algorithm named MLL-GA, which combines various multi-label learning algorithms by leveraging genetic algorithm (GA). To evaluate the effectiveness of MLL-GA, we perform experiments on 6 open source programs and show that MLL-GA could achieve average F-measures of 0.6078 to 0.8665. We also compare our algorithm with Ml.KNN and show that on average across the 6 datasets, MLL-GA improves the average F-measure of MI.KNN by 14.43%.
 

Eddeen, L.M.H.N., Saleh, E.M., Saadah, D..  2014.  Genetic Hash Algorithm. Computer Science and Information Technology (CSIT), 2014 6th International Conference on. :23-26.

Security is becoming a major concern in computing. New techniques are evolving every day; one of these techniques is Hash Visualization. Hash Visualization uses complex random generated images for security, these images can be used to hide data (watermarking). This proposed new technique improves hash visualization by using genetic algorithms. Genetic algorithms are a search optimization technique that is based on the evolution of living creatures. The proposed technique uses genetic algorithms to improve hash visualization. The used genetic algorithm was away faster than traditional previous ones, and it improved hash visualization by evolving the tree that was used to generate the images, in order to obtain a better and larger tree that will generate images with higher security. The security was satisfied by calculating the fitness value for each chromosome based on a specifically designed algorithm.
 

Barani, F..  2014.  A hybrid approach for dynamic intrusion detection in ad hoc networks using genetic algorithm and artificial immune system. Intelligent Systems (ICIS), 2014 Iranian Conference on. :1-6.

Mobile ad hoc network (MANET) is a self-created and self organized network of wireless mobile nodes. Due to special characteristics of these networks, security issue is a difficult task to achieve. Hence, applying current intrusion detection techniques developed for fixed networks is not sufficient for MANETs. In this paper, we proposed an approach based on genetic algorithm (GA) and artificial immune system (AIS), called GAAIS, for dynamic intrusion detection in AODV-based MANETs. GAAIS is able to adapting itself to network topology changes using two updating methods: partial and total. Each normal feature vector extracted from network traffic is represented by a hypersphere with fix radius. A set of spherical detector is generated using NicheMGA algorithm for covering the nonself space. Spherical detectors are used for detecting anomaly in network traffic. The performance of GAAIS is evaluated for detecting several types of routing attacks simulated using the NS2 simulator, such as Flooding, Blackhole, Neighbor, Rushing, and Wormhole. Experimental results show that GAAIS is more efficient in comparison with similar approaches.