Biblio
Genetic Programming Hyper-heuristic (GPHH) has been successfully applied to automatically evolve effective routing policies to solve the complex Uncertain Capacitated Arc Routing Problem (UCARP). However, GPHH typically ignores the interpretability of the evolved routing policies. As a result, GP-evolved routing policies are often very complex and hard to be understood and trusted by human users. In this paper, we aim to improve the interpretability of the GP-evolved routing policies. To this end, we propose a new Multi-Objective GP (MOGP) to optimise the performance and size simultaneously. A major issue here is that the size is much easier to be optimised than the performance, and the search tends to be biased to the small but poor routing policies. To address this issue, we propose a simple yet effective Two-Stage GPHH (TS-GPHH). In the first stage, only the performance is to be optimised. Then, in the second stage, both objectives are considered (using our new MOGP). The experimental results showed that TS-GPHH could obtain much smaller and more interpretable routing policies than the state-of-the-art single-objective GPHH, without deteriorating the performance. Compared with traditional MOGP, TS-GPHH can obtain a much better and more widespread Pareto front.
In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?
Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.
The massive integration of Renewable Energy Sources (RES) into power systems is a major challenge but it also provides new opportunities for network operation. For example, with a large amount of RES available at HV subtransmission level, it is possible to exploit them as controlling resources in islanding conditions. Thus, a procedure for off-line evaluation of islanded operation feasibility in the presence of RES is proposed. The method finds which generators and loads remain connected after islanding to balance the island's real power maximizing the amount of supplied load and assuring the network's long-term security. For each possible islanding event, the set of optimal control actions (load/generation shedding) to apply in case of actual islanding, is found. The procedure is formulated as a Mixed Integer Non-Linear Problem (MINLP) and is solved using Genetic Algorithms (GAs). Results, including dynamic simulations, are shown for a representative HV subtransmission grid.
The problem of fast items retrieval from a fixed collection is often encountered in most computer science areas, from operating system components to databases and user interfaces. We present an approach based on hash tables that focuses on both minimizing the number of comparisons performed during the search and minimizing the total collection size. The standard open-addressing double-hashing approach is improved with a non-linear transformation that can be parametrized in order to ensure a uniform distribution of the data in the hash table. The optimal parameter is determined using a genetic algorithm. The paper results show that near-perfect hashing is faster than binary search, yet uses less memory than perfect hashing, being a good choice for memory-constrained applications where search time is also critical.
Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.
Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.
To gain strategic insight into defending against the network reconnaissance stage of advanced persistent threats, we recreate the escalating competition between scans and deceptive views on a Software Defined Network (SDN). Our threat model presumes the defense is a deceptive network view unique for each node on the network. It can be configured in terms of the number of honeypots and subnets, as well as how real nodes are distributed across the subnets. It assumes attacks are NMAP ping scans that can be configured in terms of how many IP addresses are scanned and how they are visited. Higher performing defenses detect the scanner quicker while leaking as little information as possible while higher performing attacks are better at evading detection and discovering real nodes. By using Artificial Intelligence in the form of a competitive coevolutionary genetic algorithm, we can analyze the configurations of high performing static defenses and attacks versus their evolving adversary as well as the optimized configuration of the adversary itself. When attacks and defenses both evolve, we can observe that the extent of evolution influences the best configurations.
The network coding optimization based on niche genetic algorithm can observably reduce the network overhead of encoding technology, however, security issues haven't been considered in the coding operation. In order to solve this problem, we propose a network coding optimization scheme for niche algorithm based on security performance (SNGA). It is on the basis of multi-target niche genetic algorithm(NGA)to construct a fitness function which with k-secure network coding mechanism, and to ensure the realization of information security and achieve the maximum transmission of the network. The simulation results show that SNGA can effectively improve the security of network coding, and ensure the running time and convergence speed of the optimal solution.
The current paper proposes a method to combine the theoretical concepts of the parallel processing created by the DNA computing and GA environments, with the effectiveness novel mechanism of the distinction and discover of the cryptosystem keys. Three-level contributions to the current work, the first is the adoption of a final key sequence mechanism by the principle of interconnected sequence parts, the second to exploit the principle of the parallel that provides GA in the search for the counter value of the sequences of the challenge to the mechanism of the discrimination, the third, the most important and broadening the breaking of the cipher, is the harmony of the principle of the parallelism that has found via the DNA computing to discover the basic encryption key. The proposed method constructs a combined set of files includes binary sequences produced from substitution of the guess attributes of the binary equations system of the cryptosystem, as well as generating files that include all the prospects of the DNA strands for all successive cipher characters, the way to process these files to be obtained from the first character file, where extract a key sequence of each sequence from mentioned file and processed with the binary sequences that mentioned the counter produced from GA. The aim of the paper is exploitation and implementation the theoretical principles of the parallelism that providing via biological environment with the new sequences recognition mechanism in the cryptanalysis.
Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.
Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.