Visible to the public Biblio

Filters: Keyword is genetic algorithms  [Clear All Filters]
2020-12-01
Wang, S., Mei, Y., Park, J., Zhang, M..  2019.  A Two-Stage Genetic Programming Hyper-Heuristic for Uncertain Capacitated Arc Routing Problem. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1606—1613.

Genetic Programming Hyper-heuristic (GPHH) has been successfully applied to automatically evolve effective routing policies to solve the complex Uncertain Capacitated Arc Routing Problem (UCARP). However, GPHH typically ignores the interpretability of the evolved routing policies. As a result, GP-evolved routing policies are often very complex and hard to be understood and trusted by human users. In this paper, we aim to improve the interpretability of the GP-evolved routing policies. To this end, we propose a new Multi-Objective GP (MOGP) to optimise the performance and size simultaneously. A major issue here is that the size is much easier to be optimised than the performance, and the search tends to be biased to the small but poor routing policies. To address this issue, we propose a simple yet effective Two-Stage GPHH (TS-GPHH). In the first stage, only the performance is to be optimised. Then, in the second stage, both objectives are considered (using our new MOGP). The experimental results showed that TS-GPHH could obtain much smaller and more interpretable routing policies than the state-of-the-art single-objective GPHH, without deteriorating the performance. Compared with traditional MOGP, TS-GPHH can obtain a much better and more widespread Pareto front.

2020-11-23
Ma, S..  2018.  Towards Effective Genetic Trust Evaluation in Open Network. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :563–569.
In open network environments, since there is no centralized authority to monitor misbehaving entities, malicious entities can easily cause the degradation of the service quality. Trust has become an important factor to ensure network security, which can help entities to distinguish good partners from bad ones. In this paper, trust in open network environment is regarded as a self-organizing system, using self-organization principle of human social trust propagation, a genetic trust evaluation method with self-optimization and family attributes is proposed. In this method, factors of trust evaluation include time, IP, behavior feedback and intuitive trust. Data structure of access record table and trust record table are designed to store the relationship between ancestor nodes and descendant nodes. A genetic trust search algorithm is designed by simulating the biological evolution process. Based on trust information of the current node's ancestors, heuristics generate randomly chromosome populations, whose structure includes time, IP address, behavior feedback and intuitive trust. Then crossover and mutation strategy is used to make the population evolutionary searching. According to the genetic searching termination condition, the optimal trust chromosome in the population is selected, and trust value of the chromosome is computed, which is the node's genetic trust evaluation result. The simulation result shows that the genetic trust evaluation method is effective, and trust evaluation process of the current node can be regarded as the process of searching for optimal trust results from the ancestor nodes' information. With increasing of ancestor nodes' genetic trust information, the trust evaluation result from genetic algorithm searching is more accurate, which can effectively solve the joint fraud problem.
2020-10-26
Leach, Kevin, Dougherty, Ryan, Spensky, Chad, Forrest, Stephanie, Weimer, Westley.  2019.  Evolutionary Computation for Improving Malware Analysis. 2019 IEEE/ACM International Workshop on Genetic Improvement (GI). :18–19.
Research in genetic improvement (GI) conventionally focuses on the improvement of software, including the automated repair of bugs and vulnerabilities as well as the refinement of software to increase performance. Eliminating or reducing vulnerabilities using GI has improved the security of benign software, but the growing volume and complexity of malicious software necessitates better analysis techniques that may benefit from a GI-based approach. Rather than focus on the use of GI to improve individual software artifacts, we believe GI can be applied to the tools used to analyze malicious code for its behavior. First, malware analysis is critical to understanding the damage caused by an attacker, which GI-based bug repair does not currently address. Second, modern malware samples leverage complex vectors for infection that cannot currently be addressed by GI. In this paper, we discuss an application of genetic improvement to the realm of automated malware analysis through the use of variable-strength covering arrays.
2020-10-16
Al-Nemrat, Ameer.  2018.  Identity theft on e-government/e-governance digital forensics. 2018 International Symposium on Programming and Systems (ISPS). :1—1.

In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?

2020-09-11
ALEKSIEVA, Yulia, VALCHANOV, Hristo, ALEKSIEVA, Veneta.  2019.  An approach for host based botnet detection system. 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). :1—4.
Most serious occurrence of modern malware is Botnet. Botnet is a rapidly evolving problem that is still not well understood and studied. One of the main goals for modern network security is to create adequate techniques for the detection and eventual termination of Botnet threats. The article presents an approach for implementing a host-based Intrusion Detection System for Botnet attack detection. The approach is based on a variation of a genetic algorithm to detect anomalies in a case of attacks. An implementation of the approach and experimental results are presented.
2020-09-04
Wu, Yi, Liu, Jian, Chen, Yingying, Cheng, Jerry.  2019.  Semi-black-box Attacks Against Speech Recognition Systems Using Adversarial Samples. 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). :1—5.
As automatic speech recognition (ASR) systems have been integrated into a diverse set of devices around us in recent years, security vulnerabilities of them have become an increasing concern for the public. Existing studies have demonstrated that deep neural networks (DNNs), acting as the computation core of ASR systems, is vulnerable to deliberately designed adversarial attacks. Based on the gradient descent algorithm, existing studies have successfully generated adversarial samples which can disturb ASR systems and produce adversary-expected transcript texts designed by adversaries. Most of these research simulated white-box attacks which require knowledge of all the components in the targeted ASR systems. In this work, we propose the first semi-black-box attack against the ASR system - Kaldi. Requiring only partial information from Kaldi and none from DNN, we can embed malicious commands into a single audio chip based on the gradient-independent genetic algorithm. The crafted audio clip could be recognized as the embedded malicious commands by Kaldi and unnoticeable to humans in the meanwhile. Experiments show that our attack can achieve high attack success rate with unnoticeable perturbations to three types of audio clips (pop music, pure music, and human command) without the need of the underlying DNN model parameters and architecture.
Taori, Rohan, Kamsetty, Amog, Chu, Brenton, Vemuri, Nikita.  2019.  Targeted Adversarial Examples for Black Box Audio Systems. 2019 IEEE Security and Privacy Workshops (SPW). :15—20.
The application of deep recurrent networks to audio transcription has led to impressive gains in automatic speech recognition (ASR) systems. Many have demonstrated that small adversarial perturbations can fool deep neural networks into incorrectly predicting a specified target with high confidence. Current work on fooling ASR systems have focused on white-box attacks, in which the model architecture and parameters are known. In this paper, we adopt a black-box approach to adversarial generation, combining the approaches of both genetic algorithms and gradient estimation to solve the task. We achieve a 89.25% targeted attack similarity, with 35% targeted attack success rate, after 3000 generations while maintaining 94.6% audio file similarity.
2020-08-28
Eom, Taehoon, Hong, Jin Bum, An, SeongMo, Park, Jong Sou, Kim, Dong Seong.  2019.  Security and Performance Modeling and Optimization for Software Defined Networking. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :610—617.

Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.

2020-08-03
Si, Wen-Rong, Fu, Chen-Zhao, Gao, Kai, Zhang, Jia-Min, He, Lin, Bao, Hai-Long, Wu, Xin-Ye.  2019.  Research on a General Fast Analysis Algorithm Model for Pd Acoustic Detection System: The Algorithm Model Design and Its Application. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA). :22–26.
Nowadays, the detection of acoustical emission is widely used for fault diagnosis of gas insulated substations (GIS) in normal operation and factory tests, which is called 'non-conventional' method recommended in the standard IEC TS 62478-2016 and GIGRE D1.33 444. In this paper, to develop a data analyzer for acoustic detection (AD) system to make an assistant diagnosis for technical personnel or equipment operation and maintenance personnel, based on the previous research on the experimental research, pattern identification with phase compensation and the software development, the algorithm model design and its application is given in detail. For the acoustical emission signals (n, ti, qi), the BP artificial neural network optimized by genetic algorithm (GA-BP) is used as a classifier based on the fingerprint consisting of several statistic operators, which are derivate form typical 2D histograms of PRPD with identification with phase compensation (IPC). Experimental results show that the comprehensive algorithm model designed for identification is practical and effective.
2020-07-27
Rani, Sonam, Jain, Sushma.  2018.  Hybrid Approach to Detect Network Based Intrusion. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–5.
In internet based communication, various types of attacks have been evolved. Hence, attacker easily breaches the securities. Traditional intrusion detection techniques to observe these attacks have failed and thus hefty systems are required to remove these attacks before they expose entire network. With the ability of artificial intelligence systems to adapt high computational speed, boost fault tolerance, and error resilience against noisy information, a hybrid particle swarm optimization(PSO) fuzzy rule based inference engine has been designed in this paper. The fuzzy logic based on degree of truth while the PSO algorithm based on population stochastic technique helps in learning from the scenario, thus their combination will increase the toughness of intrusion detection system. The proposed network intrusion detection system will be able to classify normal as well as anomalism behaviour in the network. DARPA-KDD99 dataset examined on this system to address the behaviour of each connection on network and compared with existing system. This approach improves the result on the basis of precision, recall and F1-score.
2020-07-16
Bovo, Cristian, Ilea, Valentin, Rolandi, Claudio.  2018.  A Security-Constrained Islanding Feasibility Optimization Model in the Presence of Renewable Energy Sources. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—6.

The massive integration of Renewable Energy Sources (RES) into power systems is a major challenge but it also provides new opportunities for network operation. For example, with a large amount of RES available at HV subtransmission level, it is possible to exploit them as controlling resources in islanding conditions. Thus, a procedure for off-line evaluation of islanded operation feasibility in the presence of RES is proposed. The method finds which generators and loads remain connected after islanding to balance the island's real power maximizing the amount of supplied load and assuring the network's long-term security. For each possible islanding event, the set of optimal control actions (load/generation shedding) to apply in case of actual islanding, is found. The procedure is formulated as a Mixed Integer Non-Linear Problem (MINLP) and is solved using Genetic Algorithms (GAs). Results, including dynamic simulations, are shown for a representative HV subtransmission grid.

2020-06-12
Domniţa, Dan, Oprişa, Ciprian.  2018.  A genetic algorithm for obtaining memory constrained near-perfect hashing. 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). :1—6.

The problem of fast items retrieval from a fixed collection is often encountered in most computer science areas, from operating system components to databases and user interfaces. We present an approach based on hash tables that focuses on both minimizing the number of comparisons performed during the search and minimizing the total collection size. The standard open-addressing double-hashing approach is improved with a non-linear transformation that can be parametrized in order to ensure a uniform distribution of the data in the hash table. The optimal parameter is determined using a genetic algorithm. The paper results show that near-perfect hashing is faster than binary search, yet uses less memory than perfect hashing, being a good choice for memory-constrained applications where search time is also critical.

Chiba, Zouhair, Abghour, Noreddine, Moussaid, Khalid, Omri, Amina El, Rida, Mohamed.  2018.  A Hybrid Optimization Framework Based on Genetic Algorithm and Simulated Annealing Algorithm to Enhance Performance of Anomaly Network Intrusion Detection System Based on BP Neural Network. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :1—6.

Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.

Grochol, David, Sekanina, Lukas.  2018.  Fast Reconfigurable Hash Functions for Network Flow Hashing in FPGAs. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :257—263.

Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.

2020-05-18
Kermani, Fatemeh Hojati, Ghanbari, Shirin.  2019.  Extractive Persian Summarizer for News Websites. 2019 5th International Conference on Web Research (ICWR). :85–89.
Automatic extractive text summarization is the process of condensing textual information while preserving the important concepts. The proposed method after performing pre-processing on input Persian news articles generates a feature vector of salient sentences from a combination of statistical, semantic and heuristic methods and that are scored and concatenated accordingly. The scoring of the salient features is based on the article's title, proper nouns, pronouns, sentence length, keywords, topic words, sentence position, English words, and quotations. Experimental results on measurements including recall, F-measure, ROUGE-N are presented and compared to other Persian summarizers and shown to provide higher performance.
Zhong, Guo-qiang, Wang, Huai-yu, Zheng, Shuai, JIA, Bao-zhu.  2019.  Research on fusion diagnosis method of thermal fault of Marine diesel engine. 2019 Chinese Automation Congress (CAC). :5371–5375.
In order to avoid the situation that the diagnosis model based on single sensor data is easily disturbed by environmental noise and the diagnosis accuracy is low, an intelligent fault fusion diagnosis method for marine diesel engine is proposed. Firstly, the support vector machine which is optimized by genetic algorithm is used to learn the fault sample data from different sensors, then multiple fault diagnosis models and results can be got. After that, multiple groups of diagnosis results are taken as evidence bodies and fused by evidence theory to obtain more accurate diagnosis results. By analyzing the sample data obtained from the fault simulation experiment of marine diesel engine based on AVL BOOST software, the proposed method can improve the fault diagnosis accuracy of marine diesel engine and reduce the uncertainty value of diagnosis results.
2020-05-15
Kelly, Jonathan, DeLaus, Michael, Hemberg, Erik, O’Reilly, Una-May.  2019.  Adversarially Adapting Deceptive Views and Reconnaissance Scans on a Software Defined Network. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :49—54.

To gain strategic insight into defending against the network reconnaissance stage of advanced persistent threats, we recreate the escalating competition between scans and deceptive views on a Software Defined Network (SDN). Our threat model presumes the defense is a deceptive network view unique for each node on the network. It can be configured in terms of the number of honeypots and subnets, as well as how real nodes are distributed across the subnets. It assumes attacks are NMAP ping scans that can be configured in terms of how many IP addresses are scanned and how they are visited. Higher performing defenses detect the scanner quicker while leaking as little information as possible while higher performing attacks are better at evading detection and discovering real nodes. By using Artificial Intelligence in the form of a competitive coevolutionary genetic algorithm, we can analyze the configurations of high performing static defenses and attacks versus their evolving adversary as well as the optimized configuration of the adversary itself. When attacks and defenses both evolve, we can observe that the extent of evolution influences the best configurations.

2020-05-11
Anand Sukumar, J V, Pranav, I, Neetish, MM, Narayanan, Jayasree.  2018.  Network Intrusion Detection Using Improved Genetic k-means Algorithm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2441–2446.
Internet is a widely used platform nowadays by people across the globe. This has led to the advancement in science and technology. Many surveys show that network intrusion has registered a consistent increase and lead to personal privacy theft and has become a major platform for attack in the recent years. Network intrusion is any unauthorized activity on a computer network. Hence there is a need to develop an effective intrusion detection system. In this paper we acquaint an intrusion detection system that uses improved genetic k-means algorithm(IGKM) to detect the type of intrusion. This paper also shows a comparison between an intrusion detection system that uses the k-means++ algorithm and an intrusion detection system that uses IGKM algorithm while using smaller subset of kdd-99 dataset with thousand instances and the KDD-99 dataset. The experiment shows that the intrusion detection that uses IGKM algorithm is more accurate when compared to k-means++ algorithm.
2020-05-08
Fu, Tian, Lu, Yiqin, Zhen, Wang.  2019.  APT Attack Situation Assessment Model Based on optimized BP Neural Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2108—2111.
In this paper, it first analyzed the characteristics of Advanced Persistent Threat (APT). according to APT attack, this paper established an BP neural network optimized by improved adaptive genetic algorithm to predict the security risk of nodes in the network. and calculated the path of APT attacks with the maximum possible attack. Finally, experiments verify the effectiveness and correctness of the algorithm by simulating attacks. Experiments show that this model can effectively evaluate the security situation in the network, For the defenders to adopt effective measures defend against APT attacks, thus improving the security of the network.
2020-04-06
Sun, Xuezi, Xu, Guangxian, Liu, Chao.  2019.  A Network Coding Optimization Scheme for Niche Algorithm based on Security Performance. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1969—1972.

The network coding optimization based on niche genetic algorithm can observably reduce the network overhead of encoding technology, however, security issues haven't been considered in the coding operation. In order to solve this problem, we propose a network coding optimization scheme for niche algorithm based on security performance (SNGA). It is on the basis of multi-target niche genetic algorithm(NGA)to construct a fitness function which with k-secure network coding mechanism, and to ensure the realization of information security and achieve the maximum transmission of the network. The simulation results show that SNGA can effectively improve the security of network coding, and ensure the running time and convergence speed of the optimal solution.

2020-03-04
Sadkhan, Sattar B., Yaseen, Basim S..  2019.  Hybrid Method to Implement a Parallel Search of the Cryptosystem Keys. 2019 International Conference on Advanced Science and Engineering (ICOASE). :204–207.

The current paper proposes a method to combine the theoretical concepts of the parallel processing created by the DNA computing and GA environments, with the effectiveness novel mechanism of the distinction and discover of the cryptosystem keys. Three-level contributions to the current work, the first is the adoption of a final key sequence mechanism by the principle of interconnected sequence parts, the second to exploit the principle of the parallel that provides GA in the search for the counter value of the sequences of the challenge to the mechanism of the discrimination, the third, the most important and broadening the breaking of the cipher, is the harmony of the principle of the parallelism that has found via the DNA computing to discover the basic encryption key. The proposed method constructs a combined set of files includes binary sequences produced from substitution of the guess attributes of the binary equations system of the cryptosystem, as well as generating files that include all the prospects of the DNA strands for all successive cipher characters, the way to process these files to be obtained from the first character file, where extract a key sequence of each sequence from mentioned file and processed with the binary sequences that mentioned the counter produced from GA. The aim of the paper is exploitation and implementation the theoretical principles of the parallelism that providing via biological environment with the new sequences recognition mechanism in the cryptanalysis.

2020-02-17
Maykot, Arthur S., Aranha Neto, Edison A. C., Oliva, Neimar A..  2019.  Automation of Manual Switches in Distribution Networks Focused on Self-Healing: A Step toward Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–4.
This work describes the self-healing systems and their benefits in the power distribution networks, with the objective of indicating which manual switch should become, as a matter of priority, automatic. The computational tool used is based on graph theory, genetic algorithms and multicriteria evaluation. There are benefits for consumers, that will benefit from a more reliable and stable system, and for the utility, that can reduce costs with team field and financial compensations payed to consumers in case of continuity indexes violation. Data from a real distribution network from the state of Sao Paulo will be used as a case study for the application of the methodology.
Jyothi, R., Cholli, Nagaraj G..  2019.  New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
2020-01-20
Li, Peisong, Zhang, Ying.  2019.  A Novel Intrusion Detection Method for Internet of Things. 2019 Chinese Control And Decision Conference (CCDC). :4761–4765.

Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.

Elisa, Noe, Yang, Longzhi, Fu, Xin, Naik, Nitin.  2019.  Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.

Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.