Biblio
Novel Internet services are emerging around an increasing number of sensors and actuators in our surroundings, commonly referred to as smart devices. Smart devices, which form the backbone of the Internet of Things (IoT), enable alternative forms of user experience by means of automation, convenience, and efficiency. At the same time new security and safety issues arise, given the Internet-connectivity and the interaction possibility of smart devices with human's proximate living space. Hence, security is a fundamental requirement of the IoT design. In order to remain interoperable with the existing infrastructure, we postulate a security framework compatible to standard IP-based security solutions, yet optimized to meet the constraints of the IoT ecosystem. In this ongoing work, we first identify necessary components of an interoperable secure End-to-End communication while incorporating Public-key Cryptography (PKC). To this end, we tackle involved computational and communication overheads. The required components on the hardware side are the affordable hardware acceleration engines for cryptographic operations and on the software side header compression and long-lasting secure sessions. In future work, we focus on integration of these components into a framework and the evaluation of an early prototype of this framework.
Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.
- « first
- ‹ previous
- 1
- 2
- 3
- 4