Visible to the public Biblio

Filters: Keyword is security issues  [Clear All Filters]
2018-10-26
Tiwari, V., Chaurasia, B. K..  2017.  Security issues in fog computing using vehicular cloud. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–4.

In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.

2018-09-05
Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
2018-08-23
Pandey, S. B., Rawat, M. D., Rathod, H. B., Chauhan, J. M..  2017.  Security throwbot. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.

We all are very much aware of IoT that is Internet of Things which is emerging technology in today's world. The new and advanced field of technology and inventions make use of IoT for better facility. The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Our project is based on IoT and other supporting techniques which can bring out required output. Security issues are everywhere now-a-days which we are trying to deal with by our project. Our security throwbot (a throwable device) will be tossed into a room after activating it and it will capture 360 degree panaromic video from a single IP camera, by using two end connectivity that is, robot end and another is user end, will bring more features to this project. Shape of the robot will be shperical so that problem of retrieving back can be solved. Easy to use and cheap to buy is one of our goal which will be helpful to police and soldiers who get stuck in situations where they have to question oneself before entering to dangerous condition/room. Our project will help them to handle and verify any area before entering by just throwing this robot and getting the sufficient results.

2018-06-20
Deeksha, Kumar, A., Bansal, M..  2017.  A review on VANET security attacks and their countermeasure. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :580–585.

In the development of smart cities across the world VANET plays a vital role for optimized route between source and destination. The VANETs is based on infra-structure less network. It facilitates vehicles to give information about safety through vehicle to vehicle communication (V2V) or vehicle to infrastructure communication (V2I). In VANETs wireless communication between vehicles so attackers violate authenticity, confidentiality and privacy properties which further effect security. The VANET technology is encircled with security challenges these days. This paper presents overview on VANETs architecture, a related survey on VANET with major concern of the security issues. Further, prevention measures of those issues, and comparative analysis is done. From the survey, found out that encryption and authentication plays an important role in VANETS also some research direction defined for future work.

2018-06-11
Manishankar, S., Arjun, C. S., Kumar, P. R. A..  2017.  An authorized security middleware for managing on demand infrastructure in cloud. 2017 International Conference on Intelligent Computing and Control (I2C2). :1–5.
Recent increases in the field of infrastructure has led to the emerging of cloud computing a virtualized computing platform. This technology provides a lot of pros like rapid elasticity, ubiquitous network access and on-demand access etc. Compare to other technologies cloud computing provides many essential services. As the elasticity and scalability increases the chance for vulnerability of the system is also high. There are many known and unknown security risks and challenges present in this environment. In this research an environment is proposed which can handle security issues and deploys various security levels. The system handles the security of various infrastructure like VM and also handles the Dynamic infrastructure request control. One of the key feature of proposed approach is Dual authorization in which all account related data will be authorized by two privileged administrators of the cloud. The auto scalability feature of the cloud is be made secure for on-demand service request handling by providing an on-demand scheduler who will process the on-demand request and assign the required infrastructure. Combining these two approaches provides a secure environment for cloud users as well as handle On-demand Infrastructure request.
2018-06-07
Dikhit, A. S., Karodiya, K..  2017.  Result evaluation of field authentication based SQL injection and XSS attack exposure. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–6.

Figuring innovations and development of web diminishes the exertion required for different procedures. Among them the most profited businesses are electronic frameworks, managing an account, showcasing, web based business and so on. This framework mostly includes the data trades ceaselessly starting with one host then onto the next. Amid this move there are such a variety of spots where the secrecy of the information and client gets loosed. Ordinarily the zone where there is greater likelihood of assault event is known as defenceless zones. Electronic framework association is one of such place where numerous clients performs there undertaking as indicated by the benefits allotted to them by the director. Here the aggressor makes the utilization of open ranges, for example, login or some different spots from where the noxious script is embedded into the framework. This scripts points towards trading off the security imperatives intended for the framework. Few of them identified with clients embedded scripts towards web communications are SQL infusion and cross webpage scripting (XSS). Such assaults must be distinguished and evacuated before they have an effect on the security and classification of the information. Amid the most recent couple of years different arrangements have been incorporated to the framework for making such security issues settled on time. Input approvals is one of the notable fields however experiences the issue of execution drops and constrained coordinating. Some other component, for example, disinfection and polluting will create high false report demonstrating the misclassified designs. At the center, both include string assessment and change investigation towards un-trusted hotspots for totally deciphering the effect and profundity of the assault. This work proposes an enhanced lead based assault discovery with specifically message fields for viably identifying the malevolent scripts. The work obstructs the ordinary access for malignant so- rce utilizing and hearty manage coordinating through unified vault which routinely gets refreshed. At the underlying level of assessment, the work appears to give a solid base to further research.

2018-05-01
Paudel, Sarita, Smith, Paul, Zseby, Tanja.  2017.  Attack Models for Advanced Persistent Threats in Smart Grid Wide Area Monitoring. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :61–66.

Wide Area Monitoring Systems (WAMSs) provide an essential building block for Smart Grid supervision and control. Distributed Phasor Measurement Units (PMUs) allow accurate clock-synchronized measurements of voltage and current phasors (amplitudes, phase angles) and frequencies. The sensor data from PMUs provide situational awareness in the grid, and are used as input for control decisions. A modification of sensor data can severely impact grid stability, overall power supply, and physical devices. Since power grids are critical infrastructures, WAMSs are tempting targets for all kinds of attackers, including well-organized and motivated adversaries such as terrorist groups or adversarial nation states. Such groups possess sufficient resources to launch sophisticated attacks. In this paper, we provide an in-depth analysis of attack possibilities on WAMSs. We model the dependencies and building blocks of Advanced Persistent Threats (APTs) on WAMSs using attack trees. We consider the whole WAMS infrastructure, including aggregation and data collection points, such as Phasor Data Concentrators (PDCs), classical IT components, and clock synchronization. Since Smart Grids are cyber-physical systems, we consider physical perturbations, in addition to cyber attacks in our models. The models provide valuable information about the chain of cyber or physical attack steps that can be combined to build a sophisticated attack for reaching a higher goal. They assist in the assessment of physical and cyber vulnerabilities, and provide strategic guidance for the deployment of suitable countermeasures.

Woo, S., Ha, J., Byun, J., Kwon, K., Tolcha, Y., Kang, D., Nguyen, H. M., Kim, M., Kim, D..  2017.  Secure-EPCIS: Addressing Security Issues in EPCIS for IoT Applications. 2017 IEEE World Congress on Services (SERVICES). :40–43.
In the EPCglobal standards for RFID architecture frameworks and interfaces, the Electronic Product Code Information System (EPCIS) acts as a standard repository storing event and master data that are well suited to Supply Chain Management (SCM) applications. Oliot-EPCIS broadens its scope to a wider range of IoT applications in a scalable and flexible way to store a large amount of heterogeneous data from a variety of sources. However, this expansion poses data security challenge for IoT applications including patients' ownership of events generated in mobile healthcare services. Thus, in this paper we propose Secure-EPCIS to deal with security issues of EPCIS for IoT applications. We have analyzed the requirements for Secure-EPCIS based on real-world scenarios and designed access control model accordingly. Moreover, we have conducted extensive performance comparisons between EPCIS and Secure-EPCIS in terms of response time and throughput, and provide the solution for performance degradation problem in Secure-EPCIS.
2018-04-02
Sridhar, S., Smys, S..  2017.  Intelligent Security Framework for Iot Devices Cryptography Based End-to-End Security Architecture. 2017 International Conference on Inventive Systems and Control (ICISC). :1–5.

Internet of Thing (IoT) provide services by linking the different platform devices. They have the limitation in providing intelligent service. The IoT devices are heterogeneous which includes wireless sensors to less resource constrained devices. These devices are prone to hardware/software and network attacks. If not properly secured, it may lead to security issues like privacy and confidentiality. To resolve the above problem, an Intelligent Security Framework for IoT Devices is proposed in this paper. The proposed method is made up of (1) the light weight Asymmetric cryptography for securing the End-To-End devices which protects the IoT service gateway and the low power sensor nodes and (2) implements Lattice-based cryptography for securing the Broker devices/Gateway and the cloud services. The proposed architecture implements Asymmetric Key Encryption to share session key between the nodes and then uses this session key for message transfer This protects the system from Distributed Denial of Service Attacks, eavesdropping and Quantum algorithm attacks. The proposed protocol uses the unique Device ID of the sensors to generate key pair to establish mutual authentication between Devices and Services. Finally, the Mutual authentication mechanism is implemented in the gateway.

2018-03-19
Keerthana, S., Monisha, C., Priyanka, S., Veena, S..  2017.  De Duplication Scalable Secure File Sharing on Untrusted Storage in Big Data. 2017 International Conference on Information Communication and Embedded Systems (ICICES). :1–6.

Data Deduplication provides lots of benefits to security and privacy issues which can arise as user's sensitive data at risk of within and out of doors attacks. Traditional secret writing that provides knowledge confidentiality is incompatible with knowledge deduplication. Ancient secret writing wants completely different users to encode their knowledge with their own keys. Thus, identical knowledge copies of completely different various users can result in different ciphertexts that makes Deduplication not possible. Convergent secret writing has been planned to enforce knowledge confidentiality whereas creating Deduplication possible. It encrypts/decrypts a knowledge copy with a confluent key, that is obtained by computing the cryptographical hash price of the content of the information copy. Once generation of key and encryption, the user can retain the keys and send ciphertext to cloud.

Al-Aaridhi, R., Yueksektepe, A., Graffi, K..  2017.  Access Control for Secure Distributed Data Structures in Distributed Hash Tables. 2017 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–3.
Peer-To-Peer (P2P) networks open up great possibilities for intercommunication, collaborative and social projects like file sharing, communication protocols or social networks while offering advantages over the conventional Client-Server model of computing pattern. Such networks counter the problems of centralized servers such as that P2P networks can scale to millions without additional costs. In previous work, we presented Distributed Data Structure (DDS) which offers a middle-ware scheme for distributed applications. This scheme builds on top of DHT (Distributed Hash Table) based P2P overlays, and offers distributed data storage services as a middle-ware it still needs to address security issues. The main objective of this paper is to investigate possible ways to handle the security problem for DDS, and to develop a possibly reusable security architecture for access control for secure distributed data structures in P2P networks without depending on trusted third parties.
2018-02-06
Gavgani, M. H., Eftekharnejad, S..  2017.  A Graph Model for Enhancing Situational Awareness in Power Systems. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.

As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.

Dai, H., Zhu, X., Yang, G., Yi, X..  2017.  A Verifiable Single Keyword Top-k Search Scheme against Insider Attacks over Cloud Data. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :111–116.

With the development of cloud computing and its economic benefit, more and more companies and individuals outsource their data and computation to clouds. Meanwhile, the business way of resource outsourcing makes the data out of control from its owner and results in many security issues. The existing secure keyword search methods assume that cloud servers are curious-but-honest or partial honest, which makes them powerless to deal with the deliberately falsified or fabricated results of insider attacks. In this paper, we propose a verifiable single keyword top-k search scheme against insider attacks which can verify the integrity of search results. Data owners generate verification codes (VCs) for the corresponding files, which embed the ordered sequence information of the relevance scores between files and keywords. Then files and corresponding VCs are outsourced to cloud servers. When a data user performs a keyword search in cloud servers, the qualified result files are determined according to the relevance scores between the files and the interested keyword and then returned to the data user together with a VC. The integrity of the result files is verified by data users through reconstructing a new VC on the received files and comparing it with the received one. Performance evaluation have been conducted to demonstrate the efficiency and result redundancy of the proposed scheme.

2018-02-02
Noguchi, T., Yamamoto, T..  2017.  Black hole attack prevention method using dynamic threshold in mobile ad hoc networks. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :797–802.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of black hole node detection rate, throughput, and packet delivery rate.

2017-12-28
Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

2017-12-20
Maleki, H., Rahaeimehr, R., Jin, C., Dijk, M. van.  2017.  New clone-detection approach for RFID-based supply chains. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :122–127.

Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless method for detection of counterfeit product injection in supply chains. In order to adequately perform authentication, current RFID monitoring schemes need to either have a persistent online connection between supply chain partners and the back-end database or have a local database on each partner site. A persistent online connection is not guaranteed and local databases on each partner site impose extra cost and security issues. We solve this problem by introducing a new scheme in which a small Non-Volatile Memory (NVM) embedded in RFID tag is used to function as a tiny “encoded local database”. In addition our scheme resists “tag tracing” so that each partner's operation remains private. Our scheme can be implemented in less than 1200 gates satisfying current RFID technology requirements.

2017-12-12
Wei, B., Liao, G., Li, W., Gong, Z..  2017.  A Practical One-Time File Encryption Protocol for IoT Devices. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:114–119.

Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.

2017-08-02
Auxilia, M., Raja, K..  2016.  Knowledge Based Security Model for Banking in Cloud. Proceedings of the International Conference on Informatics and Analytics. :51:1–51:6.

Cloud computing is one of the happening technologies in these years and gives scope to lot of research ideas. Banks are likely to enter the cloud computing field because of abundant advantages offered by cloud like reduced IT costs, pay-per-use modeling, and business agility and green IT. Main challenges to be addressed while moving bank to cloud are security breach, governance, and Service Level Agreements (SLA). Banks should not give prospect for security breaches at any cost. Access control and authorization are vivacious solutions to security risks. Thus we are proposing a knowledge based security model addressing the present issue. Separate ontologies for subject, object, and action elements are created and an authorization rule is framed by considering the inter linkage between those elements to ensure data security with restricted access. Moreover banks are now using Software as a Service (SaaS), which is managed by Cloud Service Providers (CSPs). Banks rely upon the security measures provided by CSPs. If CSPs follow traditional security model, then the data security will be a big question. Our work facilitates the bank to pose some security measures on their side along with the security provided by the CSPs. Banks can add and delete rules according to their needs and can have control over the data in addition to CSPs. We also showed the performance analysis of our model and proved that our model provides secure access to bank data.

2017-03-08
Yang, K., Forte, D., Tehranipoor, M. M..  2015.  Protecting endpoint devices in IoT supply chain. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :351–356.

The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.

2017-02-23
K. Pawar, M. Patil.  2015.  "Pattern classification under attack on spam filtering". 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :197-201.

Spam Filtering is an adversary application in which data can be purposely employed by humans to attenuate their operation. Statistical spam filters are manifest to be vulnerable to adversarial attacks. To evaluate security issues related to spam filtering numerous machine learning systems are used. For adversary applications some Pattern classification systems are ordinarily used, since these systems are based on classical theory and design approaches do not take into account adversarial settings. Pattern classification system display vulnerabilities (i.e. a weakness that grants an attacker to reduce assurance on system's information) to several potential attacks, allowing adversaries to attenuate their effectiveness. In this paper, security evaluation of spam email using pattern classifier during an attack is addressed which degrade the performance of the system. Additionally a model of the adversary is used that allows defining spam attack scenario.

2015-05-06
Kumar, A., Sinha, M..  2014.  Overview on vehicular ad hoc network and its security issues. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :792-797.

Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.

2015-05-05
Haoliang Lou, Yunlong Ma, Feng Zhang, Min Liu, Weiming Shen.  2014.  Data mining for privacy preserving association rules based on improved MASK algorithm. Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 IEEE 18th International Conference on. :265-270.

With the arrival of the big data era, information privacy and security issues become even more crucial. The Mining Associations with Secrecy Konstraints (MASK) algorithm and its improved versions were proposed as data mining approaches for privacy preserving association rules. The MASK algorithm only adopts a data perturbation strategy, which leads to a low privacy-preserving degree. Moreover, it is difficult to apply the MASK algorithm into practices because of its long execution time. This paper proposes a new algorithm based on data perturbation and query restriction (DPQR) to improve the privacy-preserving degree by multi-parameters perturbation. In order to improve the time-efficiency, the calculation to obtain an inverse matrix is simplified by dividing the matrix into blocks; meanwhile, a further optimization is provided to reduce the number of scanning database by set theory. Both theoretical analyses and experiment results prove that the proposed DPQR algorithm has better performance.
 

Haoliang Lou, Yunlong Ma, Feng Zhang, Min Liu, Weiming Shen.  2014.  Data mining for privacy preserving association rules based on improved MASK algorithm. Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 IEEE 18th International Conference on. :265-270.

With the arrival of the big data era, information privacy and security issues become even more crucial. The Mining Associations with Secrecy Konstraints (MASK) algorithm and its improved versions were proposed as data mining approaches for privacy preserving association rules. The MASK algorithm only adopts a data perturbation strategy, which leads to a low privacy-preserving degree. Moreover, it is difficult to apply the MASK algorithm into practices because of its long execution time. This paper proposes a new algorithm based on data perturbation and query restriction (DPQR) to improve the privacy-preserving degree by multi-parameters perturbation. In order to improve the time-efficiency, the calculation to obtain an inverse matrix is simplified by dividing the matrix into blocks; meanwhile, a further optimization is provided to reduce the number of scanning database by set theory. Both theoretical analyses and experiment results prove that the proposed DPQR algorithm has better performance.
 

Silva Ferraz, F., Guimaraes Ferraz, C.A..  2014.  Smart City Security Issues: Depicting Information Security Issues in the Role of an Urban Environment. Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on. :842-847.

For the first time in the history of humanity, more them half of the population is now living in big cities. This scenario has raised concerns related systems that provide basic services to citizens. Even more, those systems has now the responsibility to empower the citizen with information and values that may aid people on daily decisions, such as related to education, transport, healthy and others. This environment creates a set of services that, interconnected, can develop a brand new range of solutions that refers to a term often called System of Systems. In this matter, focusing in a smart city, new challenges related to information security raises, those concerns may go beyond the concept of privacy issues exploring situations where the entire environment could be affected by issues different them only break the confidentiality of a data. This paper intends to discuss and propose 9 security issues that can be part of a smart city environment, and that explores more them just citizens privacy violations.
 

2015-04-30
Shafagh, H., Hithnawi, A..  2014.  Poster Abstract: Security Comes First, a Public-key Cryptography Framework for the Internet of Things. Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :135-136.

Novel Internet services are emerging around an increasing number of sensors and actuators in our surroundings, commonly referred to as smart devices. Smart devices, which form the backbone of the Internet of Things (IoT), enable alternative forms of user experience by means of automation, convenience, and efficiency. At the same time new security and safety issues arise, given the Internet-connectivity and the interaction possibility of smart devices with human's proximate living space. Hence, security is a fundamental requirement of the IoT design. In order to remain interoperable with the existing infrastructure, we postulate a security framework compatible to standard IP-based security solutions, yet optimized to meet the constraints of the IoT ecosystem. In this ongoing work, we first identify necessary components of an interoperable secure End-to-End communication while incorporating Public-key Cryptography (PKC). To this end, we tackle involved computational and communication overheads. The required components on the hardware side are the affordable hardware acceleration engines for cryptographic operations and on the software side header compression and long-lasting secure sessions. In future work, we focus on integration of these components into a framework and the evaluation of an early prototype of this framework.