Biblio
The mechanism of Fog computing is a distributed infrastructure to provide the computations as same as cloud computing. The fog computing environment provides the storage and processing of data in a distributed manner based on the locality. Fog servicing is better than cloud service for working with smart devices and users in a same locale. However the fog computing will inherit the features of the cloud, it also suffers from many security issues as cloud. One such security issue is authentication with efficient key management between the communicating entities. In this paper, we propose a secured two-way authentication scheme with efficient management of keys between the user mobile device and smart devices under the control of the fog server. We made use of operations such as one-way hash (SHA-512) functions, bitwise XOR, and fuzzy extractor function to make the authentication system to be better. We have verified the proposed scheme for its security effectiveness by using a well-used analysis tool ProVerif. We also proved that it can resist multiple attacks and the security overhead is reduced in terms of computation and communication cost as compared to the existing methods.
In the dawn of crypto-currencies the most talked currency is Bitcoin. Bitcoin is widely flourished digital currency and an exchange trading commodity implementing peer-to-peer payment network. No central athourity exists in Bitcoin. The users in network or pool of bitcoin need not to use real names, rather they use pseudo names for managing and verifying transactions. Due to the use of pseudo names bitcoin is apprehended to provide anonymity. However, the most transparent payment network is what bitcoin is. Here all the transactions are publicly open. To furnish wholeness and put a stop to double-spending, Blockchain is used, which actually works as a ledger for management of Bitcoins. Blockchain can be misused to monitor flow of bitcoins among multiple transactions. When data from external sources is amalgamated with insinuation acquired from the Blockchain, it may result to reveal user's identity and profile. In this way the activity of user may be traced to an extent to fraud that user. Along with the popularity of Bitcoins the number of adversarial attacks has also gain pace. All these activities are meant to exploit anonymity and privacy in Bitcoin. These acivities result in loss of bitcoins and unlawful profit to attackers. Here in this paper we tried to present analysis of major attacks such as malicious attack, greater than 52% attacks and block withholding attack. Also this paper aims to present analysis and improvements in Bitcoin's anonymity and privacy.
Cloud computing provides so many groundbreaking advantages over native computing servers like to improve capacity and decrease costs, but meanwhile, it carries many security issues also. In this paper, we find the feasible security attacks made about cloud computing, including Wrapping, Browser Malware-Injection and Flooding attacks, and also problems caused by accountability checking. We have also analyzed the honey pot attack and its procedural intrusion way into the system. This paper on overall deals with the most common security breaches in cloud computing and finally honey pot, in particular, to analyze its intrusion way. Our major scope is to do overall security, analyze in the cloud and then to take up with a particular attack to deal with granular level. Honey pot is the one such attack that is taken into account and its intrusion policies are analyzed. The specific honey pot algorithm is in the queue as the extension of this project in the future.
the more (IoT) scales up with promises, the more security issues raise to the surface and must be tackled down. IoT is very vulnerable against DoS attacks. In this paper, we propose a hybrid design of signature-based IDS and anomaly-based IDS. The proposed hybrid design intends to enhance the intrusion detection and prevention systems (IDPS) to detect any DoS attack at early stages by classifying the network packets based on user behavior. Simulation results prove successful detection of DoS attack at earlier stages.
Recently, the novel networking technology Software-Defined Networking(SDN) and Service Function Chaining(SFC) are rapidly growing, and security issues are also emerging for SDN and SFC. However, the research about security and safety on a novel networking environment is still unsatisfactory, and the vulnerabilities have been revealed continuously. Among these security issues, this paper addresses the ARP Poisoning attack to exploit SFC vulnerability, and proposes a method to defend the attack. The proposed method recognizes the repetitive ARP reply which is a feature of ARP Poisoning attack, and detects ARP Poisoning attack. The proposed method overcomes the limitations of the existing detection methods. The proposed method also detects the presence of an attack more accurately.
Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.