Biblio
With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.
This Work-In-Progress Paper for the Innovative Practice Category presents a novel experiment in active learning of cybersecurity. We introduced a new workshop on hacking for an existing science-popularizing program at our university. The workshop participants, 28 teenagers, played a cybersecurity game designed for training undergraduates and professionals in penetration testing. Unlike in learning environments that are simplified for young learners, the game features a realistic virtual network infrastructure. This allows exploring security tools in an authentic scenario, which is complemented by a background story. Our research aim is to examine how young players approach using cybersecurity tools by interacting with the professional game. A preliminary analysis of the game session showed several challenges that the workshop participants faced. Nevertheless, they reported learning about security tools and exploits, and 61% of them reported wanting to learn more about cybersecurity after the workshop. Our results support the notion that young learners should be allowed more hands-on experience with security topics, both in formal education and informal extracurricular events.
If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.
as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as ``BigCrypt'' where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.
Honeypot systems are an effective method for defending production systems from security breaches and to gain detailed information about attackers' motivation, tactics, software and infrastructure. In this paper we present how different types of honeypots can be employed to gain valuable information about attacks and attackers, and also outline new and innovative possibilities for future research.
Software development and web applications have become fundamental in our lives. Millions of users access these applications to communicate, obtain information and perform transactions. However, these users are exposed to many risks; commonly due to the developer's lack of experience in security protocols. Although there are many researches about web security and hacking protection, there are plenty of vulnerable websites. This article focuses in analyzing 3 main hacking techniques: XSS, CSRF, and SQL Injection over a representative group of Colombian websites. Our goal is to obtain information about how Colombian companies and organizations give (or not) relevance to security; and how the final user could be affected.
This study focuses on the spatial context of hacking to networks of Honey-pots. We investigate the relationship between topological positions and geographic positions of victimized computers and system trespassers. We've deployed research Honeypots on the computer networks of two academic institutions, collected information on successful brute force attacks (BFA) and system trespassing events (sessions), and used Social Network Analysis (SNA) techniques, to depict and understand the correlation between spatial attributes (IP addresses) and hacking networks' topology. We mapped and explored hacking patterns and found that geography might set the behavior of the attackers as well as the topology of hacking networks. The contribution of this study stems from the fact that there are no prior studies of geographical influences on the topology of hacking networks and from the unique usage of SNA to investigate hacking activities. Looking ahead, our study can assist policymakers in forming effective policies in the field of cybercrime.
Information threatening the security of critical infrastructures are exchanged over the Internet through communication platforms, such as online discussion forums. This information can be used by malicious hackers to attack critical computer networks and data systems. Much of the literature on the hacking of critical infrastructure has focused on developing typologies of cyber-attacks, but has not examined the communication activities of the actors involved. To address this gap in the literature, the language of hackers was analyzed to identify potential threats against critical infrastructures using automated analysis tools. First, discussion posts were collected from a selected hacker forum using a customized web-crawler. Posts were analyzed using a parts of speech tagger, which helped determine a list of keywords used to query the data. Next, a sentiment analysis tool scored these keywords, which were then analyzed to determine the effectiveness of this method.
Information and Communications Technologies (ICTs), especially the Internet, have become a key enabler for government organisations, businesses and individuals. With increasing growth in the adoption and use of ICT devices such as smart phones, personal computers and the Internet, Cybersecurity is one of the key concerns facing modern organisations in both developed and developing countries. This paper presents an overview of cybersecurity challenges in Bhutan, within the context that the nation is emerging as an ICT developing country. This study examines the cybersecurity incidents reported both in national media and government reports, identification and analysis of different types of cyber threats, understanding of the characteristics and motives behind cyber-attacks, and their frequency of occurrence since 1999. A discussion on an ongoing research study to investigate cybersecurity management and practices for Bhutan's government organisations is also highlighted.
Analysing cyber attack environments yield tremendous insight into adversory behavior, their strategy and capabilities. Designing cyber intensive games that promote offensive and defensive activities to capture or protect assets assist in the understanding of cyber situational awareness. There exists tangible metrics to characterizing games such as CTFs to resolve the intensity and aggression of a cyber attack. This paper synthesizes the characteristics of InCTF (India CTF) and provides an understanding of the types of vulnerabilities that have the potential to cause significant damage by trained hackers. The two metrics i.e. toxicity and effectiveness and its relation to the final performance of each team is detailed in this context.