Visible to the public Biblio

Found 486 results

Filters: Keyword is Network security  [Clear All Filters]
2021-09-30
Mahmoud, Loreen, Praveen, Raja.  2020.  Network Security Evaluation Using Deep Neural Network. 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). :1–4.
One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.
Cao, Yaofu, Li, Xiaomeng, Zhang, Shulin, Li, Yang, Chen, Liang, He, Yunrui.  2020.  Design of network security situation awareness analysis module for electric power dispatching and control system. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :716–720.
The current network security situation of the electric power dispatching and control system is becoming more and more severe. On the basis of the original network security management platform, to increase the collection of network security data information and improve the network security analysis ability, this article proposes the electric power dispatching and control system network security situation awareness analysis module. The perception layer accesses multi-source heterogeneous data sources. Upwards through the top layer, data standardization will be introduced, who realizes data support for security situation analysis, and forms an association mapping with situation awareness elements such as health situation, attack situation, behavior situation, and operation situation. The overall effect is achieving the construction goals of "full control of equipment status, source of security attacks can be traced, operational risks are identifiable, and abnormal behaviors can be found.".
2021-09-16
Almohri, Hussain M. J., Watson, Layne T., Evans, David.  2020.  An Attack-Resilient Architecture for the Internet of Things. IEEE Transactions on Information Forensics and Security. 15:3940–3954.
With current IoT architectures, once a single device in a network is compromised, it can be used to disrupt the behavior of other devices on the same network. Even though system administrators can secure critical devices in the network using best practices and state-of-the-art technology, a single vulnerable device can undermine the security of the entire network. The goal of this work is to limit the ability of an attacker to exploit a vulnerable device on an IoT network and fabricate deceitful messages to co-opt other devices. The approach is to limit attackers by using device proxies that are used to retransmit and control network communications. We present an architecture that prevents deceitful messages generated by compromised devices from affecting the rest of the network. The design assumes a centralized and trustworthy machine that can observe the behavior of all devices on the network. The central machine collects application layer data, as opposed to low-level network traffic, from each IoT device. The collected data is used to train models that capture the normal behavior of each individual IoT device. The normal behavioral data is then used to monitor the IoT devices and detect anomalous behavior. This paper reports on our experiments using both a binary classifier and a density-based clustering algorithm to model benign IoT device behavior with a realistic test-bed, designed to capture normal behavior in an IoT-monitored environment. Results from the IoT testbed show that both the classifier and the clustering algorithms are promising and encourage the use of application-level data for detecting compromised IoT devices.
Conference Name: IEEE Transactions on Information Forensics and Security
2021-09-08
Bhati, Akhilesh, Bouras, Abdelaziz, Ahmed Qidwai, Uvais, Belhi, Abdelhak.  2020.  Deep Learning Based Identification of DDoS Attacks in Industrial Application. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :190–196.
Denial of Service (DoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this paper. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset for year 2017, 2018 and CICDDoS2019 and program has been developed in Matlab R17b using Wireshark.
2021-08-02
Kong, Tong, Wang, Liming, Ma, Duohe, Chen, Kai, Xu, Zhen, Lu, Yijun.  2020.  ConfigRand: A Moving Target Defense Framework against the Shared Kernel Information Leakages for Container-based Cloud. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :794—801.
Lightweight virtualization represented by container technology provides a virtual environment for cloud services with more flexibility and efficiency due to the kernel-sharing property. However, the shared kernel also means that the system isolation mechanisms are incomplete. Attackers can scan the shared system configuration files to explore vulnerabilities for launching attacks. Previous works mainly eliminate the problem by fixing operating systems or using access control policies, but these methods require significant modifications and cannot meet the security needs of individual containers accurately. In this paper, we present ConfigRand, a moving target defense framework to prevent the information leakages due to the shared kernel in the container-based cloud. The ConfigRand deploys deceptive system configurations for each container, bounding the scan of attackers aimed at the shared kernel. In design of ConfigRand, we (1) propose a framework applying the moving target defense philosophy to periodically generate, distribute, and deploy the deceptive system configurations in the container-based cloud; (2) establish a model to formalize these configurations and quantify their heterogeneity; (3) present a configuration movement strategy to evaluate and optimize the variation of configurations. The results show that ConfigRand can effectively prevent the information leakages due to the shared kernel and apply to typical container applications with minimal system modification and performance degradation.
Billah, Mohammad Masum, Khan, Niaz Ahmed, Ullah, Mohammad Woli, Shahriar, Faisal, Rashid, Syed Zahidur, Ahmed, Md Razu.  2020.  Developing a Secured and Reliable Vehicular Communication System and Its Performance Evaluation. 2020 IEEE Region 10 Symposium (TENSYMP). :60–65.
The Ad-hoc Vehicular networks (VANET) was developed through the implementation of the concepts of ad-hoc mobile networks(MANET), which is swiftly maturing, promising, emerging wireless communication technology nowadays. Vehicular communication enables us to communicate with other vehicles and Roadside Infrastructure Units (RSU) to share information pertaining to the safety system, traffic analysis, Authentication, privacy, etc. As VANETs operate in an open wireless connectivity system, it increases permeable of variant type's security issues. Security concerns, however, which are either generally seen in ad-hoc networks or utterly unique to VANET, present significant challenges. Access Control List (ACL) can be an efficient feature to solve such security issues by permitting statements to access registered specific IP addresses in the network and deny statement unregistered IP addresses in the system. To establish such secured VANETs, the License number of the vehicle will be the Identity Number, which will be assigned via a DNS server by the Traffic Certification Authority (TCA). TCA allows registered vehicles to access the nearest two or more regions. For special vehicles, public access should be restricted by configuring ACL on a specific IP. Smart-card given by TCA can be used to authenticate a subscriber by checking previous records during entry to a new network area. After in-depth analysis of Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), Average Delay, and Handover Delay, this research offers more secure and reliable communication in VANETs.
Qi, Xiaoxia, Shen, Shuai, Wang, Qijin.  2020.  A Moving Target Defense Technology Based on SCIT. 2020 International Conference on Computer Engineering and Application (ICCEA). :454—457.
Moving target defense technology is one of the revolutionary techniques that is “changing the rules of the game” in the field of network technology, according to recent propositions from the US Science and Technology Commission. Building upon a recently-developed approach called Self Cleansing Intrusion Tolerance (SCIT), this paper proposes a moving target defense system that is based on server switching and cleaning. A protected object is maneuvered to improve its safety by exploiting software diversity and thereby introducing randomness and unpredictability into the system. Experimental results show that the improved system increases the difficulty of attack and significantly reduces the likelihood of a system being invaded, thus serving to enhance system security.
2021-07-27
Idhom, M., Wahanani, H. E., Fauzi, A..  2020.  Network Security System on Multiple Servers Against Brute Force Attacks. 2020 6th Information Technology International Seminar (ITIS). :258—262.
Network security is critical to be able to maintain the information, especially on servers that store a lot of information; several types of attacks can occur on servers, including brute force and DDoS attacks; in the case study in this research, there are four servers used so that a network security system that can synchronize with each other so that when one server detects an attack, another server can take precautions before the same attack occurs on another server.fail2ban is a network security tool that uses the IDPS (Intrusion Detection and Prevention System) method which is an extension of the IDS (Intrusion Detection System) combined with IP tables so that it can detect and prevent suspicious activities on a network, fail2ban automatically default can only run on one server without being able to synchronize on other servers. With a network security system that can run on multiple servers, the attack prevention process can be done faster because when one server detects an attack, another server will take precautions by retrieving the information that has entered the collector database synchronizing all servers other servers can prevent attacks before an attack occurs on that server.
2021-07-07
Behrens, Hans Walter, Candan, K. Selçuk.  2020.  Practical Security for Cooperative Ad Hoc Systems. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–2.
Existing consumer devices represent the most pervasive computational platform available, but their inherently decentralized nature poses significant challenges for distributed computing adoption. In particular, device owners must willingly cooperate in collective deployments even while others may intentionally work to maliciously disrupt that cooperation. Public, cooperative systems benefit from low barriers to entry improving scalability and adoption, but simultaneously increase risk exposure to adversarial threats via promiscuous participant adoption. In this work, I aim to facilitate widespread adoption of cooperative systems by discussing the unique security and operational challenges of these systems, and highlighting several novel approaches that mitigate these disadvantages.
2021-06-30
Xu, Hui, Zhang, Wei, Gao, Man, Chen, Hongwei.  2020.  Clustering Analysis for Big Data in Network Security Domain Using a Spark-Based Method. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—4.
Considering the problem of network security under the background of big data, the clustering analysis algorithms can be utilized to improve the correctness of network intrusion detection models for security management. As a kind of iterative clustering analysis algorithm, K-means algorithm is not only simple but also efficient, so it is widely used. However, the traditional K-means algorithm cannot well solve the network security problem when facing big data due to its high complexity and limited processing ability. In this case, this paper proposes to optimize the traditional K-means algorithm based on the Spark platform and deploy the optimized clustering analysis algorithm in the distributed architecture, so as to improve the efficiency of clustering algorithm for network intrusion detection in big data environment. The experimental result shows that, compared with the traditional K-means algorithm, the efficiency of the optimized K-means algorithm using a Spark-based method is significantly improved in the running time.
2021-06-02
Xu, Yizheng.  2020.  Application Research Based on Machine Learning in Network Privacy Security. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :237—240.
As the hottest frontier technology in the field of artificial intelligence, machine learning is subverting various industries step by step. In the future, it will penetrate all aspects of our lives and become an indispensable technology around us. Among them, network security is an area where machine learning can show off its strengths. Among many network security problems, privacy protection is a more difficult problem, so it needs more introduction of new technologies, new methods and new ideas such as machine learning to help solve some problems. The research contents for this include four parts: an overview of machine learning, the significance of machine learning in network security, the application process of machine learning in network security research, and the application of machine learning in privacy protection. It focuses on the issues related to privacy protection and proposes to combine the most advanced matching algorithm in deep learning methods with information theory data protection technology, so as to introduce it into biometric authentication. While ensuring that the loss of matching accuracy is minimal, a high-standard privacy protection algorithm is concluded, which enables businesses, government entities, and end users to more widely accept privacy protection technology.
2021-05-25
Zhu, Pengfei, Cui, Jiabin, Ji, Yuefeng.  2020.  A Built-in Hash Permutation Assisted Cross-layer Secure Transport in End-to-End FlexE over WDM Networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—5.

With the traffic growth with different deterministic transport and isolation requirements in radio access networks (RAN), Flexible Ethernet (FlexE) over wavelength division multiplexing (WDM) network is as a candidate for next generation RAN transport, and the security issue in RAN transport is much more obvious, especially the eavesdropping attack in physical layer. Therefore, in this work, we put forward a cross-layer design for security enhancement through leveraging universal Hashing based FlexE data block permutation and multiple parallel fibre transmission for anti-eavesdropping in end-to-end FlexE over WDM network. Different levels of attack ability are considered for measuring the impact on network security and resource utilization. Furthermore, the trade-off problem between efficient resource utilization and guarantee of higher level of security is also explored. Numerical results demonstrate the cross-layer defense strategies are effective to struggle against intruders with different levels of attack ability.

2021-05-13
Liu, Shuyong, Jiang, Hongrui, Li, Sizhao, Yang, Yang, Shen, Linshan.  2020.  A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :39–42.
Anomaly detection classification technology based on deep learning is one of the crucial technologies supporting network security. However, as the data increasing, this traditional model cannot guarantee that the false alarm rate is minimized while meeting the high detection rate. Additionally, distribution of imbalanced abnormal samples will lead to an increase in the error rate of the classification results. In this work, since CNN is effective in network intrusion classification, we embed a compressed feature layer in CNN (Convolutional Neural Networks). The purpose is to improve the efficiency of network intrusion detection. After our model was trained for 55 epochs and we set the learning rate of the model to 0.01, the detection rate reaches over 98%.
Sheng, Mingren, Liu, Hongri, Yang, Xu, Wang, Wei, Huang, Junheng, Wang, Bailing.  2020.  Network Security Situation Prediction in Software Defined Networking Data Plane. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :475–479.
Software-Defined Networking (SDN) simplifies network management by separating the control plane from the data forwarding plane. However, the plane separation technology introduces many new loopholes in the SDN data plane. In order to facilitate taking proactive measures to reduce the damage degree of network security events, this paper proposes a security situation prediction method based on particle swarm optimization algorithm and long-short-term memory neural network for network security events on the SDN data plane. According to the statistical information of the security incident, the analytic hierarchy process is used to calculate the SDN data plane security situation risk value. Then use the historical data of the security situation risk value to build an artificial neural network prediction model. Finally, a prediction model is used to predict the future security situation risk value. Experiments show that this method has good prediction accuracy and stability.
2021-05-05
Hasan, Tooba, Adnan, Akhunzada, Giannetsos, Thanassis, Malik, Jahanzaib.  2020.  Orchestrating SDN Control Plane towards Enhanced IoT Security. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :457—464.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively detect sophisticated malware resulting in undesirable (run-time) device and network modifications. This is not an easy task considering the dynamic and heterogeneous nature of IoT environments; i.e., different operating systems, varied connected networks and a wide gamut of underlying protocols and devices. Malicious IoT nodes or gateways can potentially lead to the compromise of the whole IoT network infrastructure. On the other hand, the SDN control plane has the capability to be orchestrated towards providing enhanced security services to all layers of the IoT networking stack. In this paper, we propose an SDN-enabled control plane based orchestration that leverages emerging Long Short-Term Memory (LSTM) classification models; a Deep Learning (DL) based architecture to combat malicious IoT nodes. It is a first step towards a new line of security mechanisms that enables the provision of scalable AI-based intrusion detection focusing on the operational assurance of only those specific, critical infrastructure components,thus, allowing for a much more efficient security solution. The proposed mechanism has been evaluated with current state of the art datasets (i.e., N\_BaIoT 2018) using standard performance evaluation metrics. Our preliminary results show an outstanding detection accuracy (i.e., 99.9%) which significantly outperforms state-of-the-art approaches. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security does not hinder the deployment of intelligent IoT-based computing systems.

2021-04-29
Hayes, J. Huffman, Payne, J., Essex, E., Cole, K., Alverson, J., Dekhtyar, A., Fang, D., Bernosky, G..  2020.  Towards Improved Network Security Requirements and Policy: Domain-Specific Completeness Analysis via Topic Modeling. 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). :83—86.

Network security policies contain requirements - including system and software features as well as expected and desired actions of human actors. In this paper, we present a framework for evaluation of textual network security policies as requirements documents to identify areas for improvement. Specifically, our framework concentrates on completeness. We use topic modeling coupled with expert evaluation to learn the complete list of important topics that should be addressed in a network security policy. Using these topics as a checklist, we evaluate (students) a collection of network security policies for completeness, i.e., the level of presence of these topics in the text. We developed three methods for topic recognition to identify missing or poorly addressed topics. We examine network security policies and report the results of our analysis: preliminary success of our approach.

2021-04-27
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).
2021-04-09
Mishra, A., Yadav, P..  2020.  Anomaly-based IDS to Detect Attack Using Various Artificial Intelligence Machine Learning Algorithms: A Review. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—7.
Cyber-attacks are becoming more complex & increasing tasks in accurate intrusion detection (ID). Failure to avoid intrusion can reduce the reliability of security services, for example, integrity, Privacy & availability of data. The rapid proliferation of computer networks (CNs) has reformed the perception of network security. Easily accessible circumstances affect computer networks from many threats by hackers. Threats to a network are many & hypothetically devastating. Researchers have recognized an Intrusion Detection System (IDS) up to identifying attacks into a wide variety of environments. Several approaches to intrusion detection, usually identified as Signature-based Intrusion Detection Systems (SIDS) & Anomaly-based Intrusion Detection Systems (AIDS), were proposed in the literature to address computer safety hazards. This survey paper grants a review of current IDS, complete analysis of prominent new works & generally utilized dataset to evaluation determinations. It also introduces avoidance techniques utilized by attackers to avoid detection. This paper delivers a description of AIDS for attack detection. IDS is an applied research area in artificial intelligence (AI) that uses multiple machine learning algorithms.
Peng, X., Hongmei, Z., Lijie, C., Ying, H..  2020.  Analysis of Computer Network Information Security under the Background of Big Data. 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA). :409—412.
In today's society, under the comprehensive arrival of the Internet era, the rapid development of technology has facilitated people's production and life, but it is also a “double-edged sword”, making people's personal information and other data subject to a greater threat of abuse. The unique features of big data technology, such as massive storage, parallel computing and efficient query, have created a breakthrough opportunity for the key technologies of large-scale network security situational awareness. On the basis of big data acquisition, preprocessing, distributed computing and mining and analysis, the big data analysis platform provides information security assurance services to the information system. This paper will discuss the security situational awareness in large-scale network environment and the promotion of big data technology in security perception.
2021-03-17
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

2021-03-09
Hossain, M. D., Ochiai, H., Doudou, F., Kadobayashi, Y..  2020.  SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :491—497.

Network traffic anomaly detection is of critical importance in cybersecurity due to the massive and rapid growth of sophisticated computer network attacks. Indeed, the more new Internet-related technologies are created, the more elaborate the attacks become. Among all the contemporary high-level attacks, dictionary-based brute-force attacks (BFA) present one of the most unsurmountable challenges. We need to develop effective methods to detect and mitigate such brute-force attacks in realtime. In this paper, we investigate SSH and FTP brute-force attack detection by using the Long Short-Term Memory (LSTM) deep learning approach. Additionally, we made use of machine learning (ML) classifiers: J48, naive Bayes (NB), decision table (DT), random forest (RF) and k-nearest-neighbor (k-NN), for additional detection purposes. We used the well-known labelled dataset CICIDS2017. We evaluated the effectiveness of the LSTM and ML algorithms, and compared their performance. Our results show that the LSTM model outperforms the ML algorithms, with an accuracy of 99.88%.

Zhou, B., He, J., Tan, M..  2020.  A Two-stage P2P Botnet Detection Method Based on Statistical Features. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :497—502.

P2P botnet has become one of the most serious threats to today's network security. It can be used to launch kinds of malicious activities, ranging from spamming to distributed denial of service attack. However, the detection of P2P botnet is always challenging because of its decentralized architecture. In this paper, we propose a two-stage P2P botnet detection method which only relies on several traffic statistical features. This method first detects P2P hosts based on three statistical features, and then distinguishes P2P bots from benign P2P hosts by means of another two statistical features. Experimental evaluations on real-world traffic datasets shows that our method is able to detect hidden P2P bots with a detection accuracy of 99.7% and a false positive rate of only 0.3% within 5 minutes.

2021-03-04
Jeong, J. H., Choi, S. G..  2020.  Hybrid System to Minimize Damage by Zero-Day Attack based on NIDPS and HoneyPot. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1650—1652.

This paper presents hybrid system to minimize damage by zero-day attack. Proposed system consists of signature-based NIDPS, honeypot and temporary queue. When proposed system receives packet from external network, packet which is known for attack packet is dropped by signature-based NIDPS. Passed packets are redirected to honeypot, because proposed system assumes that all packets which pass NIDPS have possibility of zero-day attack. Redirected packet is stored in temporary queue and if the packet has possibility of zero-day attack, honeypot extracts signature of the packet. Proposed system creates rule that match rule format of NIDPS based on extracted signatures and updates the rule. After the rule update is completed, temporary queue sends stored packet to NIDPS then packet with risk of attack can be dropped. Proposed system can reduce time to create and apply rule which can respond to unknown attack packets. Also, it can drop packets that have risk of zero-day attack in real time.

2021-03-01
Saputra, R., Andika, J., Alaydrus, M..  2020.  Detection of Blackhole Attack in Wireless Sensor Network Using Enhanced Check Agent. 2020 Fifth International Conference on Informatics and Computing (ICIC). :1–4.

Wireless Sensor Network (WSN) is a heterogeneous type of network consisting of scattered sensor nodes and working together for data collection, processing, and transmission functions[1], [2]. Because WSN is widely used in vital matters, aspects of its security must also be considered. There are many types of attacks that might be carried out to disrupt WSN networks. The methods of attack that exist in WSN include jamming attack, tampering, Sybil attack, wormhole attack, hello flood attack, and, blackhole attack[3]. Blackhole attacks are one of the most dangerous attacks on WSN networks. Enhanced Check Agent method is designed to detect black hole attacks by sending a checking agent to record nodes that are considered black okay. The implementation will be tested right on a wireless sensor network using ZigBee technology. Network topology uses a mesh where each node can have more than one routing table[4]. The Enhanced Check Agent method can increase throughput to 100 percent.

2021-02-23
Krohmer, D., Schotten, H. D..  2020.  Decentralized Identifier Distribution for Moving Target Defense and Beyond. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

In this work, we propose a novel approach for decentralized identifier distribution and synchronization in networks. The protocol generates network entity identifiers composed of timestamps and cryptographically secure random values with a significant reduction of collision probability. The distribution is inspired by Unique Universal Identifiers and Timestamp-based Concurrency Control algorithms originating from database applications. We defined fundamental requirements for the distribution, including: uniqueness, accuracy of distribution, optimal timing behavior, scalability, small impact on network load for different operation modes and overall compliance to common network security objectives. An implementation of the proposed approach is evaluated and the results are presented. Originally designed for a domain of proactive defense strategies known as Moving Target Defense, the general architecture of the protocol enables arbitrary applications where identifier distributions in networks have to be decentralized, rapid and secure.