Visible to the public Biblio

Found 486 results

Filters: Keyword is Network security  [Clear All Filters]
2022-09-16
Wu, Yiming, Lu, GeHao, Jin, Na, Fu, LiYu, Zhuan Zhao, Jing.  2021.  Trusted Fog Computing for Privacy Smart Contract Blockchain. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP). :1042—1047.
The fog platform is very suitable for time and location sensitive applications. Compared with cloud computing, fog computing faces new security and privacy challenges. This paper integrates blockchain nodes with fog nodes, and uses multi-party secure computing (MPC) in smart contracts to realize privacy-protected fog computing. MPC technology realizes encrypted input and output, so that participants can only get the output value of their own function. It is impossible to know the input and output of other people, and privacy calculation is realized. At the same time, the blockchain can perform network-wide verification and consensus on the results calculated by the MPC under the chain. Ensure the reliability of the calculation results. Due to the integration of blockchain and fog nodes, access control and encryption are guaranteed, integrity and isolation are provided, and privacy-sensitive data is controlled. As more complex topological structures emerge, the entire chain of fog nodes must be trusted. This ensures the network security of distributed data storage and network topology, users and fog service providers. Finally, trusted fog computing with privacy protection is realized.
2022-09-09
Fu, Zhihan, Fan, Qilin, Zhang, Xu, Li, Xiuhua, Wang, Sen, Wang, Yueyang.  2021.  Policy Network Assisted Monte Carlo Tree Search for Intelligent Service Function Chain Deployment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1161—1168.
Network function virtualization (NFV) simplies the coniguration and management of security services by migrating the network security functions from dedicated hardware devices to software middle-boxes that run on commodity servers. Under the paradigm of NFV, the service function chain (SFC) consisting of a series of ordered virtual network security functions is becoming a mainstream form to carry network security services. Allocating the underlying physical network resources to the demands of SFCs under given constraints over time is known as the SFC deployment problem. It is a crucial issue for infrastructure providers. However, SFC deployment is facing new challenges in trading off between pursuing the objective of a high revenue-to-cost ratio and making decisions in an online manner. In this paper, we investigate the use of reinforcement learning to guide online deployment decisions for SFC requests and propose a Policy network Assisted Monte Carlo Tree search approach named PACT to address the above challenge, aiming to maximize the average revenue-to-cost ratio. PACT combines the strengths of the policy network, which evaluates the placement potential of physical servers, and the Monte Carlo Tree Search, which is able to tackle problems with large state spaces. Extensive experimental results demonstrate that our PACT achieves the best performance and is superior to other algorithms by up to 30% and 23.8% on average revenue-to-cost ratio and acceptance rate, respectively.
2022-08-26
Zeng, Rong, Li, Nige, Zhou, Xiaoming, Ma, Yuanyuan.  2021.  Building A Zero-trust Security Protection System in The Environment of The Power Internet of Things. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :557–560.
With the construction of power information network, the power grid has built a security protection system based on boundary protection. However, with the continuous advancement of the construction of the power Internet of Things, a large number of power Internet of Things terminals need to connect to the power information network through the public network, which have an impact on the existing security protection system of the power grid. This article analyzes the characteristics of the border protection model commonly used in network security protection. Aiming at the lack of security protection capabilities of this model, a zero-trust security architecture-based power Internet of Things network security protection model is proposed. Finally, this article analyzes and studies the application of zero trust in the power Internet of Things.
Sun, Pengyu, Zhang, Hengwei, Ma, Junqiang, Li, Chenwei, Mi, Yan, Wang, Jindong.  2021.  A Selection Strategy for Network Security Defense Based on a Time Game Model. 2021 International Conference on Digital Society and Intelligent Systems (DSInS). :223—228.
Current network assessment models often ignore the impact of attack-defense timing on network security, making it difficult to characterize the dynamic game of attack-defense effectively. To effectively manage the network security risks and reduce potential losses, in this article, we propose a selection strategy for network defense based on a time game model. By analyzing the attack-defense status by analogy with the SIR infectious disease model, construction of an optimal defense strategy model based on time game, and calculation of the Nash equilibrium of the the attacker and the defender under different strategies, we can determine an optimal defense strategy. With the Matlab simulation, this strategy is verified to be effective.
Lv, Huiying, Zhang, Yuan, Li, Huan, Chang, Wenjun.  2021.  Security Assessment of Enterprise Networks Based on Analytic Network Process and Evidence Theory. 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). :305—313.

Network security has always been the most important of enterprise informatization construction and development, and the security assessment of network system is the basis for enterprises to make effective security defense strategies. Aiming at the relevance of security factors and subjectivity of evaluation results in the process of enterprise network system security assessment, a security assessment method combining Analytic Network Process and evidence theory is proposed. Firstly, we built a complete security assessment index system and network analysis structure model for enterprise network, and determined the converged security index weights by calculating hypermatrix, limit hypermatrix and stable limit hypermatrix; then, we used the evidence theory on data fusion of the evaluation opinions of multiple experts to eliminate the conflict between evidences. Finally, according to the principle of maximum membership degree, we realized the assessment of enterprise network security level using weighted average. The example analysis showed that the model not only weighed the correlation influence among the security indicators, but also effectively reduced the subjectivity of expert evaluation and the fuzziness and uncertainty in qualitative analysis, which verified the effectiveness of the model and method, and provided an important basis for network security management.

2022-08-12
Liu, Songsong, Feng, Pengbin, Sun, Kun.  2021.  HoneyBog: A Hybrid Webshell Honeypot Framework against Command Injection. 2021 IEEE Conference on Communications and Network Security (CNS). :218—226.
Web server is an appealing target for attackers since it may be exploited to gain access to an organization’s internal network. After compromising a web server, the attacker can construct a webshell to maintain a long-term and stealthy access for further attacks. Among all webshell-based attacks, command injection is a powerful attack that can be launched to steal sensitive data from the web server or compromising other computers in the network. To monitor and analyze webshell-based command injection, we develop a hybrid webshell honeypot framework called HoneyBog, which intercepts and redirects malicious injected commands from the front-end honeypot to the high-fidelity back-end honeypot for execution. HoneyBog can achieve two advantages by using the client-server honeypot architecture. First, since the webshell-based injected commands are transferred from the compromised web server to a remote constrained execution environment, we can prevent the attacker from launching further attacks in the protected network. Second, it facilitates the centralized management of high-fidelity honeypots for remote honeypot service providers. Moreover, we increase the system fidelity of HoneyBog by synchronizing the website files between the front-end and back-end honeypots. We implement a prototype of HoneyBog using PHP and the Apache web server. Our experiments on 260 PHP webshells show that HoneyBog can effectively intercept and redirect injected commands with a low performance overhead.
R, Prasath, Rajan, Rajesh George.  2021.  Autonomous Application in Requirements Analysis of Information System Development for Producing a Design Model. 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). :1—8.
The main technology of traditional information security is firewall, intrusion detection and anti-virus software, which is used in the first anti-outer defence, the first anti-service terminal defence terminal passive defence ideas, the complexity and complexity of these security technologies not only increase the complexity of the autonomous system, reduce the efficiency of the system, but also cannot solve the security problem of the information system, and cannot satisfy the security demand of the information system. After a significant stretch of innovative work, individuals utilize the secret word innovation, network security innovation, set forward the idea “confided in figuring” in view of the equipment security module support, Trusted processing from changing the customary protection thoughts, center around the safety efforts taken from the terminal to forestall framework assaults, from the foundation of the stage, the acknowledgment of the security of data frameworks. Believed figuring is chiefly worried about the security of the framework terminal, utilizing a progression of safety efforts to ensure the protection of clients to work on the security of independent frameworks. Its principle plan thought is implanted in a typical machine to oppose altering the equipment gadget - confided in stage module as the base of the trust, the utilization of equipment and programming innovation to join the trust of the base of trust through the trust bind level to the entire independent framework, joined with the security of information stockpiling insurance, client validation and stage respectability of the three significant safety efforts guarantee that the terminal framework security and unwavering quality, to guarantee that the terminal framework is consistently in a condition of conduct anticipated.
2022-08-02
Yeboah-Ofori, Abel, Agbodza, Christian Kwame, Opoku-Boateng, Francisca Afua, Darvishi, Iman, Sbai, Fatim.  2021.  Applied Cryptography in Network Systems Security for Cyberattack Prevention. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :43—48.
Application of cryptography and how various encryption algorithms methods are used to encrypt and decrypt data that traverse the network is relevant in securing information flows. Implementing cryptography in a secure network environment requires the application of secret keys, public keys, and hash functions to ensure data confidentiality, integrity, authentication, and non-repudiation. However, providing secure communications to prevent interception, interruption, modification, and fabrication on network systems has been challenging. Cyberattacks are deploying various methods and techniques to break into network systems to exploit digital signatures, VPNs, and others. Thus, it has become imperative to consider applying techniques to provide secure and trustworthy communication and computing using cryptography methods. The paper explores applied cryptography concepts in information and network systems security to prevent cyberattacks and improve secure communications. The contribution of the paper is threefold: First, we consider the various cyberattacks on the different cryptography algorithms in symmetric, asymmetric, and hashing functions. Secondly, we apply the various RSA methods on a network system environment to determine how the cyberattack could intercept, interrupt, modify, and fabricate information. Finally, we discuss the secure implementations methods and recommendations to improve security controls. Our results show that we could apply cryptography methods to identify vulnerabilities in the RSA algorithm in secure computing and communications networks.
2022-08-01
Husa, Eric, Tourani, Reza.  2021.  Vibe: An Implicit Two-Factor Authentication using Vibration Signals. 2021 IEEE Conference on Communications and Network Security (CNS). :236—244.
The increased need for online account security and the prominence of smartphones in today’s society has led to smartphone-based two-factor authentication schemes, in which the second factor is a code received on the user’s smartphone. Evolving two-factor authentication mechanisms suggest using the proximity of the user’s devices as the second authentication factor, avoiding the inconvenience of user-device interaction. These mechanisms often use low-range communication technologies or the similarities of devices’ environments to prove devices’ proximity and user authenticity. However, such mechanisms are vulnerable to colocated adversaries. This paper proposes Vibe-an implicit two-factor authentication mechanism, which uses a vibration communication channel to prove users’ authenticity in a secure and non-intrusive manner. Vibe’s design provides security at the physical layer, reducing the attack surface to the physical surface shared between devices. As a result, it protects users’ security even in the presence of co-located adversaries-the primary drawback of the existing systems. We prototyped Vibe and assessed its performance using commodity hardware in different environments. Our results show an equal error rate of 0.0175 with an end-to-end authentication latency of approximately 3.86 seconds.
2022-07-29
Makarova, Mariia S., Maksutov, Artem A..  2021.  Methods of Detecting and Neutralizing Potential DHCP Rogue Servers. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :522—525.
In the continuously evolving environment, computer security has become a convenient challenge because of the rapid rise and expansion of the Internet. One of the most significant challenges to networks is attacks on network resources caused by inadequate network security. DHCP is defenseless to a number of attacks, such as DHCP rogue server attacks. This work is focused on developing a method of detecting these attacks and granting active host protection on GNU/Linux operating systems. Unauthorized DHCP servers can be easily arranged and compete with the legitimate server on the local network that can be the result of distributing incorrect IP addresses, malicious DNS server addresses, invalid routing information to unsuspecting clients, intercepting and eavesdropping on communications, and so on. The goal is to prevent the situations described above by recognizing untrusted DHCP servers and providing active host protection on the local network.
2022-07-15
Tao, Jing, Chen, A, Liu, Kai, Chen, Kailiang, Li, Fengyuan, Fu, Peng.  2021.  Recommendation Method of Honeynet Trapping Component Based on LSTM. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :952—957.
With the advancement of network physical social system (npss), a large amount of data privacy has become the targets of hacker attacks. Due to the complex and changeable attack methods of hackers, network security threats are becoming increasingly severe. As an important type of active defense, honeypots use the npss as a carrier to ensure the security of npss. However, traditional honeynet structures are relatively fixed, and it is difficult to trap hackers in a targeted manner. To bridge this gap, this paper proposes a recommendation method for LSTM prediction trap components based on attention mechanism. Its characteristic lies in the ability to predict hackers' attack interest, which increases the active trapping ability of honeynets. The experimental results show that the proposed prediction method can quickly and effectively predict the attacking behavior of hackers and promptly provide the trapping components that hackers are interested in.
2022-07-13
Wang, Tianma, Zhao, Dongmei, Zheng, Le.  2021.  Information Protection of International Students Based on Network Security. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :172—176.
With China's overall national strength, the education of studying in China has entered a period of rapid development, and China has become one of the important destination countries for international student mobility. With political stability, rapid economic development, and continuous improvement in the quality of higher education, the educational value of studying in China is increasingly recognized by international students. International students study and live in the same way as domestic students. While the development of the Internet has brought convenience to people, it has also created many security risks. How to protect the information security of international students is the focus of this paper. This paper introduces the classification, characteristics and security risks of international students' personal information. In order to protect the private data of international students from being leaked, filtering rules are set in the campus network through WinRoute firewall to effectively prevent information from being leaked, tampered or deleted, which can be used for reference by other universities.
2022-07-01
Chen, Lei.  2021.  Layered Security Multicast Algorithm based on Security Energy Efficiency Maximization in SCMA Networks. 2021 7th International Conference on Computer and Communications (ICCC). :2033–2037.
This paper studies the hierarchical secure multicast algorithm in sparse code multiple access (SCMA) networks, its network security capacity is no longer limited by the users with the worst channel quality in multicast group. Firstly, we propose a network security energy efficiency (SEE) maximization problem. Secondly, in order to reduce the computational complexity, we propose a suboptimal algorithm (SA), which separates the codebook assignment with artificial noise from the power allocation with artificial noise. To further decrease the complexity of Lagrange method, a power allocation algorithm with increased fixed power is introduced. Finally, simulation results show that the network performance of the proposed algorithm in SCMA network is significantly better than that in orthogonal frequency division multiple access (OFDMA) network.
2022-06-15
Fan, Wenjun, Chang, Sang-Yoon, Zhou, Xiaobo, Xu, Shouhuai.  2021.  ConMan: A Connection Manipulation-based Attack Against Bitcoin Networking. 2021 IEEE Conference on Communications and Network Security (CNS). :101–109.
Bitcoin is a representative cryptocurrency system using a permissionless peer-to-peer (P2P) network as its communication infrastructure. A number of attacks against Bitcoin have been discovered over the past years, including the Eclipse and EREBUS Attacks. In this paper, we present a new attack against Bitcoin’s P2P networking, dubbed ConMan because it leverages connection manipulation. ConMan achieves the same effect as the Eclipse and EREBUS Attacks in isolating a target (i.e., victim) node from the rest of the Bitcoin network. However, ConMan is different from these attacks because it is an active and deterministic attack, and is more effective and efficient. We validate ConMan through proof-of-concept exploitation in an environment that is coupled with real-world Bitcoin node functions. Experimental results show that ConMan only needs a few minutes to fully control the peer connections of a target node, which is in sharp contrast to the tens of days that are needed by the Eclipse and EREBUS Attacks. Further, we propose several countermeasures against ConMan. Some of them would be effective but incompatible with the design principles of Bitcoin, while the anomaly detection approach is positively achievable. We disclosed ConMan to the Bitcoin Core team and received their feedback, which confirms ConMan and the proposed countermeasures.
2022-06-14
Schneider, Madeleine, Aspinall, David, Bastian, Nathaniel D..  2021.  Evaluating Model Robustness to Adversarial Samples in Network Intrusion Detection. 2021 IEEE International Conference on Big Data (Big Data). :3343–3352.
Adversarial machine learning, a technique which seeks to deceive machine learning (ML) models, threatens the utility and reliability of ML systems. This is particularly relevant in critical ML implementations such as those found in Network Intrusion Detection Systems (NIDS). This paper considers the impact of adversarial influence on NIDS and proposes ways to improve ML based systems. Specifically, we consider five feature robustness metrics to determine which features in a model are most vulnerable, and four defense methods. These methods are tested on six ML models with four adversarial sample generation techniques. Our results show that across different models and adversarial generation techniques, there is limited consistency in vulnerable features or in effectiveness of defense method.
2022-06-09
Manoj Vignesh, K M, Sujanani, Anish, Bangalore, Raghu A..  2021.  Modelling Trust Frameworks for Network-IDS. 2021 2nd International Conference for Emerging Technology (INCET). :1–5.
Though intrusion detection systems provide actionable alerts based on signature-based or anomaly-based traffic patterns, the majority of systems still rely on human analysts to identify and contain the root cause of security incidents. This process is naturally susceptible to human error and is time-consuming, which may allow for further enumeration and pivoting within a compromised environment. Through this paper, we have augmented traditional signature-based network intrusion detection systems with a trust framework whose reduction and redemption values are a function of the severity of the incident, the degree of connectivity of nodes and the time elapsed. A lightweight implementation on the nodes coupled with a multithreaded approach on the central trust server has shown the capability to scale to larger networks with high traffic volumes and a varying proportion of suspicious traffic patterns.
Xiang, Guangli, Shao, Can.  2021.  Low Noise Homomorphic Encryption Scheme Supporting Multi-Bit Encryption. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :150–156.
Fully homomorphic encryption (FHE) provides effective security assurance for privacy computing in cloud environments. But the existing FHE schemes are generally faced with challenges including using single-bit encryption and large ciphertext noise, which greatly affects the encryption efficiency and practicability. In this paper, a low-noise FHE scheme supporting multi-bit encryption is proposed based on the HAO scheme. The new scheme redesigns the encryption method without changing the system parameters and expands the plaintext space to support the encryption of integer matrices. In the process of noise reduction, we introduce a PNR method and use the subGaussian distribution theory to analyze the ciphertext noise. The security and the efficiency analysis show that the improved scheme can resist the chosen plaintext attack and effectively reduce the noise expansion rate. Comparative experiments show that the scheme has high encryption efficiency and is suitable for the privacy-preserving computation of integer matrices.
Limouchi, Elnaz, Mahgoub, Imad.  2021.  Reinforcement Learning-assisted Threshold Optimization for Dynamic Honeypot Adaptation to Enhance IoBT Networks Security. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–7.
Internet of Battlefield Things (IoBT) is the application of Internet of Things (IoT) to a battlefield environment. IoBT networks operate in difficult conditions due to high mobility and unpredictable nature of battle fields and securing them is a challenge. There is increasing interest to use deception techniques to enhance the security of IoBT networks. A honeypot is a system installed on a network as a trap to attract the attention of an attacker and it does not store any valuable data. In this work, we introduce IoBT dual sensor gateways. We propose a Reinforcement Learning (RL)-assisted scheme, in which the IoBT dual sensor gateways intelligently switch between honeypot and real function based on a threshold. The optimal threshold is determined using reinforcement learning approach that adapts to nodes reputation. To focus on the impact of the mobile and uncertain behavior of IoBT networks on the proposed scheme, we consider the nodes as moving vehicles. We statistically analyze the results of our RL-based scheme obtained using ns-3 network simulation, and optimize value of the threshold.
Trestioreanu, Lucian, Nita-Rotaru, Cristina, Malhotra, Aanchal, State, Radu.  2021.  SPON: Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay. 2021 IEEE Conference on Communications and Network Security (CNS). :92–100.
Payment systems are a critical component of everyday life in our society. While in many situations payments are still slow, opaque, siloed, expensive or even fail, users expect them to be fast, transparent, cheap, reliable and global. Recent technologies such as distributed ledgers create opportunities for near-real-time, cheaper and more transparent payments. However, in order to achieve a global payment system, payments should be possible not only within one ledger, but also across different ledgers and geographies.In this paper we propose Secure Payments with Overlay Networks (SPON), a service that enables global payments across multiple ledgers by combining the transaction exchange provided by the Interledger protocol with an intrusion-tolerant overlay of relay nodes to achieve (1) improved payment latency, (2) fault-tolerance to benign failures such as node failures and network partitions, and (3) resilience to BGP hijacking attacks. We discuss the design goals and present an implementation based on the Interledger protocol and Spines overlay network. We analyze the resilience of SPON and demonstrate through experimental evaluation that it is able to improve payment latency, recover from path outages, withstand network partition attacks, and disseminate payments fairly across multiple ledgers. We also show how SPON can be deployed to make the communication between different ledgers resilient to BGP hijacking attacks.
Hu, Peng, Yang, Baihua, Wang, Dong, Wang, Qile, Meng, Kaifeng, Wang, Yinsheng, Chen, Zhen.  2021.  Research on Cybersecurity Strategy and Key Technology of the Wind Farms’ Industrial Control System. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :357–361.
Affected by the inherent ideas like "Focus on Function Realization, Despise Security Protection", there are lots of hidden threats in the industrial control system of wind farms (ICS-WF), such as unreasonable IP configuration, failure in virus detection and killing, which are prone to illegal invasion and attack from the cyberspace. Those unexpected unauthorized accesses are quite harmful for the stable operation of the wind farms and regional power grid. Therefore, by investigating the current security situation and needs of ICS-WF, analyzing the characteristics of ICS-WF’s architecture and internal communication, and integrating the ideas of the classified protection of cybersecurity, this paper proposes a new customized cybersecurity strategy for ICS-WF based on the barrel theory. We also introduce an new anomalous intrusion detection technology for ICS-WF, which is developed based on statistical models of wind farm network characteristics. Finally, combined all these work with the network security offense and defense drill in the industrial control safety simulation laboratory of wind farms, this research formulates a three-dimensional comprehensive protection solution for ICS-WF, which significantly improves the cybersecurity level of ICS-WF.
Qiu, Bin, Chen, Ke, He, Kexun, Fang, Xiyu.  2021.  Research on vehicle network intrusion detection technology based on dynamic data set. 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). :386–390.
A new round of scientific and technological revolution and industrial reform promote the intelligent development of automobile and promote the deep integration of automobile with Internet, big data, communication and other industries. At the same time, it also brings network and data security problems to automobile, which is very easy to cause national security and social security risks. Intelligent vehicle Ethernet intrusion detection can effectively alleviate the security risk of vehicle network, but the complex attack means and vehicle compatibility have not been effectively solved. This research takes the vehicle Ethernet as the research object, constructs the machine learning samples for neural network, applies the self coding network technology combined with the original characteristics to the network intrusion detection algorithm, and studies a self-learning vehicle Ethernet intrusion detection algorithm. Through the application and test of vehicle terminal, the algorithm generated in this study can be used for vehicle terminal with Ethernet communication function, and can effectively resist 34 kinds of network attacks in four categories. This method effectively improves the network security defense capability of vehicle Ethernet, provides technical support for the network security of intelligent vehicles, and can be widely used in mass-produced intelligent vehicles with Ethernet.
2022-06-08
Kong, Hongshan, Tang, Jun.  2021.  Agent-based security protection model of secret-related carrier intelligent management and control. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:301–304.
Secret-related carrier intelligent management and control system uses the Internet of Things and artificial intelligence to solve the transformation of secret-related carrier management and control from manual operation to automatic detection, precise monitoring, and intelligent decision-making, and use technical means to resolve security risks. However, the coexistence of multiple heterogeneous networks will lead to various network security problems in the secret carrier intelligent management and control. Aiming at the actual requirements of the intelligent management and control of secret-related carriers, this paper proposes a system structure including device domain, network domain, platform domain and user domain, and conducts a detailed system security analysis, and introduces intelligent agent technology, and proposes a distributed system. The hierarchical system structure of the secret-related carrier intelligent management and control security protection model has good robustness and portability.
2022-06-07
Pantelidis, Efthimios, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Insider Threat Detection using Deep Autoencoder and Variational Autoencoder Neural Networks. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :129–134.
Internal attacks are one of the biggest cybersecurity issues to companies and businesses. Despite the implemented perimeter security systems, the risk of adversely affecting the security and privacy of the organization’s information remains very high. Actually, the detection of such a threat is known to be a very complicated problem, presenting many challenges to the research community. In this paper, we investigate the effectiveness and usefulness of using Autoencoder and Variational Autoencoder deep learning algorithms to automatically defend against insider threats, without human intervention. The performance evaluation of the proposed models is done on the public CERT dataset (CERT r4.2) that contains both benign and malicious activities generated from 1000 simulated users. The comparison results with other models show that the Variational Autoencoder neural network provides the best overall performance with a higher detection accuracy and a reasonable false positive rate.
2022-05-19
Aljubory, Nawaf, Khammas, Ban Mohammed.  2021.  Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1–6.

Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.

2022-05-12
Rokade, Monika D., Sharma, Yogesh Kumar.  2021.  MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :533–536.
Computer network and virtual machine security is very essential in today's era. Various architectures have been proposed for network security or prevent malicious access of internal or external users. Various existing systems have already developed to detect malicious activity on victim machines; sometimes any external user creates some malicious behavior and gets unauthorized access of victim machines to such a behavior system considered as malicious activities or Intruder. Numerous machine learning and soft computing techniques design to detect the activities in real-time network log audit data. KKDDCUP99 and NLSKDD most utilized data set to detect the Intruder on benchmark data set. In this paper, we proposed the identification of intruders using machine learning algorithms. Two different techniques have been proposed like a signature with detection and anomaly-based detection. In the experimental analysis, demonstrates SVM, Naïve Bayes and ANN algorithm with various data sets and demonstrate system performance on the real-time network environment.