Biblio
Network security has always been the most important of enterprise informatization construction and development, and the security assessment of network system is the basis for enterprises to make effective security defense strategies. Aiming at the relevance of security factors and subjectivity of evaluation results in the process of enterprise network system security assessment, a security assessment method combining Analytic Network Process and evidence theory is proposed. Firstly, we built a complete security assessment index system and network analysis structure model for enterprise network, and determined the converged security index weights by calculating hypermatrix, limit hypermatrix and stable limit hypermatrix; then, we used the evidence theory on data fusion of the evaluation opinions of multiple experts to eliminate the conflict between evidences. Finally, according to the principle of maximum membership degree, we realized the assessment of enterprise network security level using weighted average. The example analysis showed that the model not only weighed the correlation influence among the security indicators, but also effectively reduced the subjectivity of expert evaluation and the fuzziness and uncertainty in qualitative analysis, which verified the effectiveness of the model and method, and provided an important basis for network security management.
Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.