Visible to the public Biblio

Found 279 results

Filters: Keyword is Routing protocols  [Clear All Filters]
2023-09-08
Huang, Junya, Liu, Zhihua, Zheng, Zhongmin, Wei, Xuan, Li, Man, Jia, Man.  2022.  Research and Development of Intelligent Protection Capabilities Against Internet Routing Hijacking and Leakage. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :50–54.
With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
2023-08-25
Deshmukh, Kshitij, Jain, Avani, Singh, Shubhangi, Bhattacharya, Pronaya, Prasad, Vivek, Zuhair, Mohd.  2022.  A Secured Dialog Protocol Scheme Over Content Centric Networks. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :95–101.
Internet architecture has transformed into a more complex form than it was about a decade back. Today the internet comprises multimedia information where services and web applications have started to shift their focus on content. In our perspective of communication systems, content-centric networking (CCN) proposes a new methodology. The use of cache memory at the network level is an important feature of this new architecture. This cache is intended to store transit details for a set period, and it is hoped that this capability will aid in network quality, especially in a rapidly increasing video streaming situation. Information-centric networking (ICN) is the one architecture that is seen as a possible alternative for shifting the Internet from a host-centric to a content-centric point-of-view. It focuses on data rather than content. CCN is more reliable when it comes to data delivery as it does not need to depend on location for data. CCN architecture is scalable, secure and provides mobility support. In this paper, we implement a ccnchat, a chat testing application, which is created with the help of libraries provided by Palo Alto Research Center (PARC) on local area network (LAN) between two users and demonstrate the working of this local chat application over CCN network that works alongside existing IP infrastructure.
2023-08-03
Chen, Wenlong, Wang, Xiaolin, Wang, Xiaoliang, Xu, Ke, Guo, Sushu.  2022.  LRVP: Lightweight Real-Time Verification of Intradomain Forwarding Paths. IEEE Systems Journal. 16:6309–6320.
The correctness of user traffic forwarding paths is an important goal of trusted transmission. Many network security issues are related to it, i.e., denial-of-service attacks, route hijacking, etc. The current path-aware network architecture can effectively overcome this issue through path verification. At present, the main problems of path verification are high communication and high computation overhead. To this aim, this article proposes a lightweight real-time verification mechanism of intradomain forwarding paths in autonomous systems to achieve a path verification architecture with no communication overhead and low computing overhead. The problem situation is that a packet finally reaches the destination, but its forwarding path is inconsistent with the expected path. The expected path refers to the packet forwarding path determined by the interior gateway protocols. If the actual forwarding path is different from the expected one, it is regarded as an incorrect forwarding path. This article focuses on the most typical intradomain routing environment. A few routers are set as the verification routers to block the traffic with incorrect forwarding paths and raise alerts. Experiments prove that this article effectively solves the problem of path verification and the problem of high communication and computing overhead.
Conference Name: IEEE Systems Journal
2023-07-21
Manjula, P., Baghavathi Priya, S..  2022.  Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
2023-05-30
Kharkwal, Ayushi, Mishra, Saumya, Paul, Aditi.  2022.  Cross-Layer DoS Attack Detection Technique for Internet of Things. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :368—372.
Security of Internet of Things (IoT) is one of the most prevalent crucial challenges ever since. The diversified devices and their specification along with resource constrained protocols made it more complex to address over all security need of IoT. Denial of Service attacks, being the most powerful and frequent attacks on IoT have been considered so forth. However, the attack happens on multiple layers and thus a single detection technique for each layer is not sufficient and effective to combat these attacks. Current study focuses on cross layer intrusion detection system (IDS) for detection of multiple Denial of Service (DoS) attacks. Presently, two attacks at Transmission Control Protocol (TCP) and Routing Protocol are considered for Low power and Lossy Networks (RPL) and a neural network-based IDS approach has been proposed for the detection of such attacks. The attacks are simulated on NetSim and detection and the performance shows up to 80% detection probabilities.
2023-04-27
Shenoy, Nirmala, Chandraiah, Shreyas Madapura, Willis, Peter.  2022.  Internet Routing with Auto-Assigned Addresses. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :70–75.
Key challenges faced in the Internet today can be enumerated as follows: (1) complex route discovery mechanisms (2) latency and instability during link or device failure recovery (3) inadequacy in extending routing and addressing to limited domains, (4) complex interworking of multiple routing protocols at border routers. Routing table sizes increase with increasing number of networks indicating a scalability issue. One approach to address this spiraling complexity and performance challenges is to start fresh and re-think Internet routing and addressing. The Expedited Internet Bypass protocol (EIBP) is such a clean slate approach. In the interim, EIBP works in parallel with IP and has no dependency on layer 3 protocols. We demonstrated EIBP for routing and forwarding in an Autonomous system (AS) in our earlier work. In this article, we demonstrate EIBP for inter-AS routing. We compare EIBP's inter-AS operations and performance to Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP) deployed in an intra-AS, inter-AS communications scenario with two AS.
ISSN: 2474-154X
2023-02-17
Jiang, Jie, Long, Pengyu, Xie, Lijia, Zheng, Zhiming.  2022.  A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
Wu, Hua, Zhang, Xuange, Chen, Tingzheng, Cheng, Guang, Hu, Xiaoyan.  2022.  IM-Shield: A Novel Defense System against DDoS Attacks under IP Spoofing in High-speed Networks. ICC 2022 - IEEE International Conference on Communications. :4168–4173.
DDoS attacks are usually accompanied by IP spoofing, but the availability of existing DDoS defense systems for high-speed networks decreases when facing DDoS attacks with IP spoofing. Although IP traceback technologies are proposed to focus on IP spoofing in DDoS attacks, there are problems in practical application such as the need to change existing protocols and extensive infrastructure support. To defend against DDoS attacks under IP spoofing in high-speed networks, we propose a novel DDoS defense system, IM-Shield. IM-Shield uses the address pair consisting of the upper router interface MAC address and the destination IP address for DDoS attack detection. IM-Shield implements fine-grained defense against DDoS attacks under IP spoofing by filtering the address pairs of attack traffic without requiring protocol and infrastructure extensions to be applied on the Internet. Detection experiments using the public dataset show that in a 10Gbps high-speed network, the detection precision of IM-Shield for DDoS attacks under IP spoofing is higher than 99.9%; and defense experiments simulating real-time processing in a 10Gbps high-speed network show that IM-Shield can effectively defend against DDoS attacks under IP spoofing.
2023-01-05
C, Chethana, Pareek, Piyush Kumar, Costa de Albuquerque, Victor Hugo, Khanna, Ashish, Gupta, Deepak.  2022.  Deep Learning Technique Based Intrusion Detection in Cyber-Security Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–7.
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
Kim, Jae-Dong, Ko, Minseok, Chung, Jong-Moon.  2022.  Novel Analytical Models for Sybil Attack Detection in IPv6-based RPL Wireless IoT Networks. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1–3.
Metaverse technologies depend on various advanced human-computer interaction (HCI) devices to be supported by extended reality (XR) technology. Many new HCI devices are supported by wireless Internet of Things (IoT) networks, where a reliable routing scheme is essential for seamless data trans-mission. Routing Protocol for Low power and Lossy networks (RPL) is a key routing technology used in IPv6-based low power and lossy networks (LLNs). However, in the networks that are configured, such as small wireless devices applying the IEEE 802.15.4 standards, due to the lack of a system that manages the identity (ID) at the center, the maliciously compromised nodes can make fabricated IDs and pretend to be a legitimate node. This behavior is called Sybil attack, which is very difficult to respond to since attackers use multiple fabricated IDs which are legally disguised. In this paper, Sybil attack countermeasures on RPL-based networks published in recent studies are compared and limitations are analyzed through simulation performance analysis.
2022-12-09
Yassin, Ahmed Mohsen, Azer, Marianne A..  2022.  Performance Comparison of AODV and DSDV In Vehicular Ad Hoc Networks. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :402—405.
Vehicle Ad-Hoc Networks (VANETs) are a special type of Mobile Ad-Hoc Network (MANETs). In VANETs, a group of vehicles communicates with each other to transfer data without a need for a fixed infrastructure. In this paper, we compare the performance of two routing protocols: Ad-hoc on Demand Distance Vector protocol (AODV) and Destination-Sequenced Distance Vector protocol (DSDV) in VANETs. We measure the reliability of each protocol in the packet delivery.
2022-12-06
Koosha, Mohammad, Farzaneh, Behnam, Farzaneh, Shahin.  2022.  A Classification of RPL Specific Attacks and Countermeasures in the Internet of Things. 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT). :1-7.

Although 6LoWPAN has brought about a revolutionary leap in networking for Low-power Lossy Networks, challenges still exist, including security concerns that are yet to answer. The most common type of attack on 6LoWPANs is the network layer, especially routing attacks, since the very members of a 6LoWPAN network have to carry out packet forwarding for the whole network. According to the initial purpose of IoT, these nodes are expected to be resource-deficient electronic devices with an utterly stochastic time pattern of attachment or detachment from a network. This issue makes preserving their authenticity or identifying their malignity hard, if not impossible. Since 6LoWPAN is a successor and a hybrid of previously developed wireless technologies, it is inherently prone to cyber-attacks shared with its predecessors, especially Wireless Sensor Networks (WSNs) and WPANs. On the other hand, multiple attacks have been uniquely developed for 6LoWPANs due to the unique design of the network layer protocol of 6LoWPANs known as RPL. While there exist publications about attacks on 6LoWPANs, a comprehensive survey exclusively on RPL-specific attacks is felt missing to bold the discrimination between the RPL-specific and non-specific attacks. Hence, the urge behind this paper is to gather all known attacks unique to RPL in a single volume.

Verma, Sachin Kumar, Verma, Abhishek, Pandey, Avinash Chandra.  2022.  Addressing DAO Insider Attacks in IPv6-Based Low-Power and Lossy Networks. 2022 IEEE Region 10 Symposium (TENSYMP). :1-6.

Low-Power and Lossy Networks (LLNs) run on resource-constrained devices and play a key role in many Industrial Internet of Things and Cyber-Physical Systems based applications. But, achieving an energy-efficient routing in LLNs is a major challenge nowadays. This challenge is addressed by Routing Protocol for Low-power Lossy Networks (RPL), which is specified in RFC 6550 as a “Proposed Standard” at present. In RPL, a client node uses Destination Advertisement Object (DAO) control messages to pass on the destination information towards the root node. An attacker may exploit the DAO sending mechanism of RPL to perform a DAO Insider attack in LLNs. In this paper, it is shown that an aggressive attacker can drastically degrade the network performance. To address DAO Insider attack, a lightweight defense solution is proposed. The proposed solution uses an early blacklisting strategy to significantly mitigate the attack and restore RPL performance. The proposed solution is implemented and tested on Cooja Simulator.

Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Study of RPL Attacks and Defense Mechanisms in the Internet of Things Network. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1-6.

The Internet of Things (IoT) is a technology that has evolved to make day-to-day life faster and easier. But with the increase in the number of users, the IoT network is prone to various security and privacy issues. And most of these issues/attacks occur during the routing of the data in the IoT network. Therefore, for secure routing among resource-constrained nodes of IoT, the RPL protocol has been standardized by IETF. But the RPL protocol is also vulnerable to attacks based on resources, topology formation and traffic flow between nodes. The attacks like DoS, Blackhole, eavesdropping, flood attacks and so on cannot be efficiently defended using RPL protocol for routing data in IoT networks. So, defense mechanisms are used to protect networks from routing attacks. And are classified into Secure Routing Protocols (SRPs) and Intrusion Detection systems (IDs). This paper gives an overview of the RPL attacks and the defense mechanisms used to detect or mitigate the RPL routing attacks in IoT networks.

Kiran, Usha.  2022.  IDS To Detect Worst Parent Selection Attack In RPL-Based IoT Network. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :769-773.

The most widely used protocol for routing across the 6LoWPAN stack is the Routing Protocol for Low Power and Lossy (RPL) Network. However, the RPL lacks adequate security solutions, resulting in numerous internal and external security vulnerabilities. There is still much research work left to uncover RPL's shortcomings. As a result, we first implement the worst parent selection (WPS) attack in this paper. Second, we offer an intrusion detection system (IDS) to identify the WPS attack. The WPS attack modifies the victim node's objective function, causing it to choose the worst node as its preferred parent. Consequently, the network does not achieve optimal convergence, and nodes form the loop; a lower rank node selects a higher rank node as a parent, effectively isolating many nodes from the network. In addition, we propose DWA-IDS as an IDS for detecting WPS attacks. We use the Contiki-cooja simulator for simulation purposes. According to the simulation results, the WPS attack reduces system performance by increasing packet transmission time. The DWA-IDS simulation results show that our IDS detects all malicious nodes that launch the WPS attack. The true positive rate of the proposed DWA-IDS is more than 95%, and the detection rate is 100%. We also deliberate the theoretical proof for the false-positive case as our DWA-IDS do not have any false-positive case. The overhead of DWA-IDS is modest enough to be set up with low-power and memory-constrained devices.

Rani, Jyoti, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Detailed Review of the IoT with Detection of Sinkhole Attacks in RPL based network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things” (IoT) is internetworking of physical devices known as 'things', algorithms, equipment and techniques that allow communication with another device, equipment and software over the network. And with the advancement in data communication, every device must be connected via the Internet. For this purpose, we use resource-constrained sensor nodes for collecting data from homes, offices, hospitals, industries and data centers. But various vulnerabilities may ruin the functioning of the sensor nodes. Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized, secure routing protocol designed for the 6LoWPAN IoT network. It's a proactive routing protocol that works on the destination-oriented topology to perform safe routing. The Sinkhole is a networking attack that destroys the topology of the RPL protocol as the attacker node changes the route of all the traffic in the IoT network. In this paper, we have given a survey of Sinkhole attacks in IoT and proposed different methods for preventing and detecting these attacks in a low-power-based IoT network.

Nisha, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Review of DIS-Flooding Attacks in RPL based IoT Network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things (IoT)” is a term that describes physical sensors, processing software, power and other technologies to connect or interchange information between systems and devices through the Internet and other forms of communication. RPL protocol can efficiently establish network routes, communicate routing information, and adjust the topology. The 6LoWPAN concept was born out of the belief that IP should protect even the tiniest devices, and for low-power devices, minimal computational capabilities should be permitted to join IoT. The DIS-Flooding against RPL-based IoT with its mitigation techniques are discussed in this paper.

Aneja, Sakshi, Mittal, Sumit, Sharma, Dhirendra.  2022.  An Optimized Mobility Management Framework for Routing Protocol Lossy Networks using Optimization Algorithm. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-8.

As a large number of sensor nodes as well as limited resources such as energy, memory, computing power, as well as bandwidth. Lossy linkages connect these nodes together. In early 2008,IETF working group looked into using current routing protocols for LLNs. Routing Over minimum power and Lossy networksROLL standardizes an IPv6 routing solution for LLNs because of the importance of LLNs in IoT.IPv6 Routing Protocol is based on the 6LoWPAN standard. RPL has matured significantly. The research community is becoming increasingly interested in it. The topology of RPL can be built in a variety of ways. It creates a topology in advance. Due to the lack of a complete review of RPL, in this paper a mobility management framework has been proposed along with experimental evaluation by applying parameters likePacket Delivery Ratio, throughput, end to end delay, consumed energy on the basis of the various parameters and its analysis done accurately. Finally, this paper can help academics better understand the RPL and engage in future research projects to improve it.

2022-09-16
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla, Mohamed, Amr, Guizani, Mohsen.  2021.  A Robust Protocol for Smart eHealthcare based on Elliptic Curve Cryptography and Fuzzy logic in IoT. 2021 IEEE Globecom Workshops (GC Wkshps). :1—6.

Emerging technologies change the qualities of modern healthcare by employing smart systems for patient monitoring. To well use the data surrounding the patient, tiny sensing devices and smart gateways are involved. These sensing systems have been used to collect and analyze the real-time data remotely in Internet of Medical Thinks (IoM). Since the patient sensed information is so sensitive, the security and privacy of medical data are becoming challenging problem in IoM. It is then important to ensure the security, privacy and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for the IoM. In this paper, in order to improve the authentication and communications in health care applications, we present a novel secure and anonymous authentication scheme. We will use elliptic curve cryptography (ECC) with random numbers generated by fuzzy logic. We simulate IoM scheme using network simulator 3 (NS3) and we employ optimized link state routing protocol (OLSR) algorithm and ECC at each node of the network. We apply some attack algorithms such as Pollard’s ρ and Baby-step Giant-step to evaluate the vulnerability of the proposed scheme.

2022-08-10
Prabhu, S., Anita E.A., Mary.  2020.  Trust based secure routing mechanisms for wireless sensor networks: A survey. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1003—1009.
Wireless Sensor Network (WSN)is a predominant technology that is widely used in many applications such as industrial sectors, defense, environment, habitat monitoring, medical fields etc., These applications are habitually delegated for observing sensitive and confidential raw data such as adversary position, movement in the battle field, location of personnel in a building, changes in environmental condition, regular medical updates from patient side to doctors or hospital control rooms etc., Security becomes inevitable in WSN and providing security is being truly intricate because of in-built nature of WSN which is assailable to attacks easily. Node involved in WSN need to route the data to the neighboring nodes wherein any attack in the node could lead to fiasco. Of late trust mechanisms have been considered to be an ideal solution that can mitigate security problems in WSN. This paper aims to investigate various existing trust-based Secure Routing (SR) protocols and mechanisms available for the wireless sensing connection. The concept of the present trust mechanism is also analyzed with respect to methodology, trust metric, pros, cons, and complexity involved. Finally, the security resiliency of various trust models against the attacks is also analyzed.
2022-06-09
Hoarau, Kevin, Tournoux, Pierre Ugo, Razafindralambo, Tahiry.  2021.  Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
Aman, Muhammad Naveed, Sikdar, Biplab.  2021.  AI Based Algorithm-Hardware Separation for IoV Security. 2021 IEEE Globecom Workshops (GC Wkshps). :1–6.
The Internet of vehicles is emerging as an exciting application to improve safety and providing better services in the form of active road signs, pay-as-you-go insurance, electronic toll, and fleet management. Internet connected vehicles are exposed to new attack vectors in the form of cyber threats and with the increasing trend of cyber attacks, the success of autonomous vehicles depends on their security. Existing techniques for IoV security are based on the un-realistic assumption that all the vehicles are equipped with the same hardware (at least in terms of computational capabilities). However, the hardware platforms used by various vehicle manufacturers are highly heterogeneous. Therefore, a security protocol designed for IoVs should be able to detect the computational capabilities of the underlying platform and adjust the security primitives accordingly. To solve this issue, this paper presents a technique for algorithm-hardware separation for IoV security. The proposed technique uses an iterative routine and the corresponding execution time to detect the computational capabilities of a hardware platform using an artificial intelligence based inference engine. The results on three different commonly used micro-controllers show that the proposed technique can effectively detect the type of hardware platform with up to 100% accuracy.
2022-05-24
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
2022-05-06
Diamant, Roee, Casari, Paolo, Tomasin, Stefano.  2021.  Topology-based Secret Key Generation for Underwater Acoustic Networks. 2021 Fifth Underwater Communications and Networking Conference (UComms). :1—5.
We propose a method to let a source and a destination agree on a key that remains secret to a potential eavesdropper in an underwater acoustic network (UWAN). We generate the key from the propagation delay measured over a set of multihop routes: this harvests the randomness in the UWAN topology and turns the slow sound propagation in the water into an advantage for the key agreement protocol. Our scheme relies on a route discovery handshake. During this process, all intermediate relays accumulate message processing delays, so that both the source and the destination can compute the actual propagation delays along each route, and map this information to a string of bits. Finally, via a secret key agreement from the information-theoretic security framework, we obtain an equal set of bits at the source and destination, which is provably secret to a potential eavesdropper located away from both nodes. Our simulation results show that, even for small UWANs of 4 nodes, we obtain 11 secret bits per explored topology, and that the protocol is insensitive to an average node speed of up to 0.5 m/s.
2022-04-25
Pacífico, Racyus D. G., Castanho, Matheus S., Vieira, Luiz F. M., Vieira, Marcos A. M., Duarte, Lucas F. S., Nacif, José A. M..  2021.  Application Layer Packet Classifier in Hardware. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :515–522.
Traffic classification is fundamental to network operators to manage the network better. L7 classification and Deep Packet Inspection (DPI) using regular expressions are vital components to provide application-aware traffic classification. Nevertheless, there are open challenges yet, such as programmability and performance combined with security. In this paper, we introduce eBPFlow, a fast application layer packet classifier in hardware. eBPFlow allows packet classification with DPI on packet headers and payloads in runtime. It enables programming of regular expressions (RegEx) and security protocols using eBPF (extended Berkeley Packet Filter). We built eBPFlow on NetFPGA SUME 40 Gbps and created several application classifiers. The tests were performed in a physical testbed. Our results show that eBPFlow supports packet classification on the application layer with line rate. It only consumes 22 W.