Visible to the public Biblio

Found 879 results

Filters: Keyword is authentication  [Clear All Filters]
2020-02-10
Odelu, Vanga.  2019.  An Efficient Two-Server Password-Only User Authentication for Consumer Electronic Devices. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1–2.

We propose an efficient and secure two-server password-only remote user authentication protocol for consumer electronic devices, such as smartphones and laptops. Our protocol works on-top of any existing trust model, like Secure Sockets Layer protocol (SSL). The proposed protocol is secure against dictionary and impersonation attacks.

Midha, Sugandhi, Triptahi, Khushboo.  2019.  Extended TLS Security and Defensive Algorithm in OpenFlow SDN. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :141–146.

Software Defined Network (SDN) is a revolutionary networking paradigm which provides the flexibility of programming the network interface as per the need and demand of the user. Software Defined Network (SDN) is independent of vendor specific hardware or protocols and offers the easy extensions in the networking. A customized network as per on user demand facilitates communication control via a single entity i.e. SDN controller. Due to this SDN Controller has become more vulnerable to SDN security attacks and more specifically a single point of failure. It is worth noticing that vulnerabilities were identified because of customized applications which are semi-independent of underlying network infrastructure. No doubt, SDN has provided numerous benefits like breaking vendor lock-ins, reducing overhead cost, easy innovations, increasing programmability among devices, introducing new features and so on. But security of SDN cannot be neglected and it has become a major topic of debate. The communication channel used in SDN is OpenFlow which has made TLS implementation an optional approach in SDN. TLS adoption is important and still vulnerable. This paper focuses on making SDN OpenFlow communication more secure by following extended TLS support and defensive algorithm.

Dan, Kenya, Kitagawa, Naoya, Sakuraba, Shuji, Yamai, Nariyoshi.  2019.  Spam Domain Detection Method Using Active DNS Data and E-Mail Reception Log. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:896–899.

E-mail is widespread and an essential communication technology in modern times. Since e-mail has problems with spam mails and spoofed e-mails, countermeasures are required. Although SPF, DKIM and DMARC have been proposed as sender domain authentication, these mechanisms cannot detect non-spoofing spam mails. To overcome this issue, this paper proposes a method to detect spam domains by supervised learning with features extracted from e-mail reception log and active DNS data, such as the result of Sender Authentication, the Sender IP address, the number of each DNS record, and so on. As a result of the experiment, our method can detect spam domains with 88.09% accuracy and 97.11% precision. We confirmed that our method can detect spam domains with detection accuracy 19.40% higher than the previous study by utilizing not only active DNS data but also e-mail reception log in combination.

2020-01-28
Krishna, Gutha Jaya, Ravi, Vadlamani.  2019.  Keystroke Based User Authentication Using Modified Differential Evolution. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :739–744.

User Authentication is a difficult problem yet to be addressed accurately. Little or no work is reported in literature dealing with clustering-based anomaly detection techniques for user authentication for keystroke data. Therefore, in this paper, Modified Differential Evolution (MDE) based subspace anomaly detection technique is proposed for user authentication in the context of behavioral biometrics using keystroke dynamics features. Thus, user authentication is posed as an anomaly detection problem. Anomalies in CMU's keystroke dynamics dataset are identified using subspace-based and distance-based techniques. It is observed that, among the proposed techniques, MDE based subspace anomaly detection technique yielded the highest Area Under ROC Curve (AUC) for user authentication problem. We also performed a Wilcoxon Signed Rank statistical test to corroborate our results statistically.

Patel, Yogesh, Ouazzane, Karim, Vassilev, Vassil T., Faruqi, Ibrahim, Walker, George L..  2019.  Keystroke Dynamics Using Auto Encoders. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.

In the modern day and age, credential based authentication systems no longer provide the level of security that many organisations and their services require. The level of trust in passwords has plummeted in recent years, with waves of cyber attacks predicated on compromised and stolen credentials. This method of authentication is also heavily reliant on the individual user's choice of password. There is the potential to build levels of security on top of credential based authentication systems, using a risk based approach, which preserves the seamless authentication experience for the end user. One method of adding this security to a risk based authentication framework, is keystroke dynamics. Monitoring the behaviour of the users and how they type, produces a type of digital signature which is unique to that individual. Learning this behaviour allows dynamic flags to be applied to anomalous typing patterns that are produced by attackers using stolen credentials, as a potential risk of fraud. Methods from statistics and machine learning have been explored to try and implement such solutions. This paper will look at an Autoencoder model for learning the keystroke dynamics of specific users. The results from this paper show an improvement over the traditional tried and tested statistical approaches with an Equal Error Rate of 6.51%, with the additional benefits of relatively low training times and less reliance on feature engineering.

Handa, Jigyasa, Singh, Saurabh, Saraswat, Shipra.  2019.  A Comparative Study of Mouse and Keystroke Based Authentication. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :670–674.

One of the basic behavioural biometric methods is keystroke element. Being less expensive and not requiring any extra bit of equipment is the main advantage of keystroke element. The primary concentration of this paper is to give an inevitable review of behavioural biometrics strategies, measurements and different methodologies and difficulties and future bearings specially of keystroke analysis and mouse dynamics. Keystrokes elements frameworks utilize insights, e.g. time between keystrokes, word decisions, word mixes, general speed of writing and so on. Mouse Dynamics is termed as the course of actions captured from the moving mouse by an individual when interacting with a GUI. These are representative factors which may be called mouse dynamics signature of an individual, and may be used for verification of identity of an individual. In this paper, we compare the authentication system based on keystroke dynamics and mouse dynamics.

2020-01-27
Yang, Kun, Forte, Domenic, Tehranipoor, Mark M..  2017.  CDTA: A Comprehensive Solution for Counterfeit Detection, Traceability, and Authentication in the IoT Supply Chain. ACM Transactions on Design Automation of Electronic Systems (TODAES). 22:42:1-42:31.

The Internet of Things (IoT) is transforming the way we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. However, the vulnerabilities in the IoT supply chain have raised serious concerns about the security and trustworthiness of IoT devices and components within them. Testing for device provenance, detection of counterfeit integrated circuits (ICs) and systems, and traceability of IoT devices are challenging issues to address. In this article, we develop a novel radio-frequency identification (RFID)-based system suitable for counterfeit detection, traceability, and authentication in the IoT supply chain called CDTA. CDTA is composed of different types of on-chip sensors and in-system structures that collect necessary information to detect multiple counterfeit IC types (recycled, cloned, etc.), track and trace IoT devices, and verify the overall system authenticity. Central to CDTA is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-on and power-off scenarios. CDTA sensor data can also be sent to the remote server for authentication via an encrypted Ethernet channel when the IoT device is deployed in the field. A novel board ID generator is implemented by combining outputs of physical unclonable functions (PUFs) embedded in the RFID tag and different chips on the PCB. A light-weight RFID protocol is proposed to enable mutual authentication between RFID readers and tags. We also implement a secure interchip communication on the PCB. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio-frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.

Nakamura, Emilio, Ribeiro, Sérgio.  2019.  Risk-Based Attributed Access Control Modelling in a Health Platform: Results from Project CityZen. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :391–398.

This paper presents an access control modelling that integrates risk assessment elements in the attribute-based model to organize the identification, authentication and authorization rules. Access control is complex in integrated systems, which have different actors accessing different information in multiple levels. In addition, systems are composed by different components, much of them from different developers. This requires a complete supply chain trust to protect the many existent actors, their privacy and the entire ecosystem. The incorporation of the risk assessment element introduces additional variables like the current environment of the subjects and objects, time of the day and other variables to help produce more efficient and effective decisions in terms of granting access to specific objects. The risk-based attributed access control modelling was applied in a health platform, Project CityZen.

2020-01-21
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

He, Lin, Ren, Gang, Liu, Ying.  2019.  Bootstrapping Accountability and Privacy to IPv6 Internet without Starting from Scratch. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :1486–1494.

Accountability and privacy are considered valuable but conflicting properties in the Internet, which at present does not provide native support for either. Past efforts to balance accountability and privacy in the Internet have unsatisfactory deployability due to the introduction of new communication identifiers, and because of large-scale modifications to fully deployed infrastructures and protocols. The IPv6 is being deployed around the world and this trend will accelerate. In this paper, we propose a private and accountable proposal based on IPv6 called PAVI that seeks to bootstrap accountability and privacy to the IPv6 Internet without introducing new communication identifiers and large-scale modifications to the deployed base. A dedicated quantitative analysis shows that the proposed PAVI achieves satisfactory levels of accountability and privacy. The results of evaluation of a PAVI prototype show that it incurs little performance overhead, and is widely deployable.

Yang, Zheng, Lai, Junyu, Sun, Yingbing, Zhou, Jianying.  2019.  A Novel Authenticated Key Agreement Protocol With Dynamic Credential for WSNs. ACM Transactions on Sensor Networks (TOSN). 15:22:1-22:27.
Public key cryptographic primitive (e.g., the famous Diffie-Hellman key agreement, or public key encryption) has recently been used as a standard building block in authenticated key agreement (AKA) constructions for wireless sensor networks (WSNs) to provide perfect forward secrecy (PFS), where the expensive cryptographic operation (i.e., exponentiation calculation) is involved. However, realizing such complex computation on resource-constrained wireless sensors is inefficient and even impossible on some devices. In this work, we introduce a new AKA scheme with PFS for WSNs without using any public key cryptographic primitive. To achieve PFS, we rely on a new dynamic one-time authentication credential that is regularly updated in each session. In particular, each value of the authentication credential is wisely associated with at most one session key that enables us to fulfill the security goal of PFS. Furthermore, the proposed scheme enables the principals to identify whether they have been impersonated previously. We highlight that our scheme can be very efficiently implemented on sensors since only hash function and XOR operation are required.
Gao, Peng, Yang, Ruxia, Shi, Congcong, Zhang, Xiaojian.  2019.  Research on Security Protection Technology System of Power Internet of Things. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1772–1776.

With the rapid development of Internet of Things applications, the power Internet of Things technologies and applications covering the various production links of the power grid "transmission, transmission, transformation, distribution and use" are becoming more and more popular, and the terminal, network and application security risks brought by them are receiving more and more attention. Combined with the architecture and risk of power Internet of Things, this paper first proposes the overall security protection technology system and strategy for power Internet of Things; then analyzes terminal identity authentication and authority control, edge area autonomy and data transmission protection, and application layer cloud fog security management. And the whole process real-time security monitoring; Finally, through the analysis of security risks and protection, the technical difficulties and directions for the security protection of the Internet of Things are proposed.

Shehu, Abubakar-Sadiq, Pinto, António, Correia, Manuel E..  2019.  Privacy Preservation and Mandate Representation in Identity Management Systems. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The growth in Internet usage has increased the use of electronic services requiring users to register their identity on each service they subscribe to. This has resulted in the prevalence of redundant users data on different services. To protect and regulate access by users to these services identity management systems (IdMs)are put in place. IdMs uses frameworks and standards e.g SAML, OAuth and Shibboleth to manage digital identities of users for identification and authentication process for a service provider. However, current IdMs have not been able to address privacy issues (unauthorised and fine-grained access)that relate to protecting users identity and private data on web services. Many implementations of these frameworks are only concerned with the identification and authentication process of users but not authorisation. They mostly give full control of users digital identities and data to identity and service providers with less or no users participation. This results in a less privacy enhanced solutions that manage users available data in the electronic space. This article proposes a user-centred mandate representation system that empowers resource owners to take full of their digital data; determine and delegate access rights using their mobile phone. Thereby giving users autonomous powers on their resources to grant access to authenticated entities at their will. Our solution is based on the OpenID Connect framework for authorisation service. To evaluate the proposal, we've compared it with some related works and the privacy requirements yardstick outlined in GDPR regulation [1] and [2]. Compared to other systems that use OAuth 2.0 or SAML our solution uses an additional layer of security, where data owner assumes full control over the disclosure of their identity data through an assertion issued from their mobile phones to authorisation server (AS), which in turn issues an access token. This would enable data owners to assert the authenticity of a request, while service providers and requestors also benefit from the correctness and freshness of identity data disclosed to them.
Rana, Rima, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  An Assessment of Blockchain Identity Solutions: Minimizing Risk and Liability of Authentication. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :26–33.
Personally Identifiable Information (PII) is often used to perform authentication and acts as a gateway to personal and organizational information. One weak link in the architecture of identity management services is sufficient to cause exposure and risk identity. Recently, we have witnessed a shift in identity management solutions with the growth of blockchain. Blockchain-the decentralized ledger system-provides a unique answer addressing security and privacy with its embedded immutability. In a blockchain-based identity solution, the user is given the control of his/her identity by storing personal information on his/her device and having the choice of identity verification document used later to create blockchain attestations. Yet, the blockchain technology alone is not enough to produce a better identity solution. The user cannot make informed decisions as to which identity verification document to choose if he/she is not presented with tangible guidelines. In the absence of scientifically created practical guidelines, these solutions and the choices they offer may become overwhelming and even defeat the purpose of providing a more secure identity solution.We analyze different PII options given to users for authentication on current blockchain-based solutions. Based on our Identity Ecosystem model, we evaluate these options and their risk and liability of exposure. Powered by real world data of about 6,000 identity theft and fraud stories, our model recommends some authentication choices and discourages others. Our work paves the way for a truly effective identity solution based on blockchain by helping users make informed decisions and motivating blockchain identity solution providers to introduce better options to their users.
Petrovska, Jovana, Memeti, Agon, Imeri, Florinda.  2019.  SOA Approach - Identity and Access Management for the Risk Management Platform. 2019 8th Mediterranean Conference on Embedded Computing (MECO). :1–4.
The Risk Management system should help customs to more easily and effectively detect irregularities in import, export or transit of goods. Customs administrations today are required to provide extensive facilitation while maintaining control over the international movement of goods, means of transport and persons. The level of risk is determined in the context of the priorities of the Customs administrations e.g. whether the priority is collection of duties and taxes or checking prohibitions and restrictions or any other specific area that has been identified. The aim of the proposed platform in this paper is to achieve a high-quality, multi-layered approach to risk management that is effective and efficient, i.e. the platform is built on decoupled microservices, the different components are working together and an interruption in one segment does not have major effect on the overall system. The main motivation behind this case study is the hands-on experience we have and the close proximity to the project, i.e. information exchange and team discussions as the main available resources.
Pal, Shantanu.  2019.  Limitations and Approaches in Access Control and Identity Management for Constrained IoT Resources. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :431–432.
The Internet of Things (IoT), smart sensors and mobile wearable devices are helping to provide services that are more ubiquitous, smarter, faster and easily accessible to users. However, security is a significant concern for the IoT, with access control and identity management are being two major issues. With the growing size and presence of these systems and the resource constrained nature of the IoT devices, an important question is how to manage policies in a manner that is both scalable and flexible. In this research, we aim at proposing a fine-grained and flexible access control architecture, and to examine an identity model for constrained IoT resources. To achieve this, first, we outline some key limitations in the state of the art access control and identity management for IoT. Then we devise our approach to address those limitations in a systematic way.
Dabbaghi Varnosfaderani, Shirin, Kasprzak, Piotr, Pohl, Christof, Yahyapour, Ramin.  2019.  A Flexible and Compatible Model for Supporting Assurance Level through a Central Proxy. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :46–52.

Generally, methods of authentication and identification utilized in asserting users' credentials directly affect security of offered services. In a federated environment, service owners must trust external credentials and make access control decisions based on Assurance Information received from remote Identity Providers (IdPs). Communities (e.g. NIST, IETF and etc.) have tried to provide a coherent and justifiable architecture in order to evaluate Assurance Information and define Assurance Levels (AL). Expensive deployment, limited service owners' authority to define their own requirements and lack of compatibility between heterogeneous existing standards can be considered as some of the unsolved concerns that hinder developers to openly accept published works. By assessing the advantages and disadvantages of well-known models, a comprehensive, flexible and compatible solution is proposed to value and deploy assurance levels through a central entity called Proxy.

Huang, Jiaju, Klee, Bryan, Schuckers, Daniel, Hou, Daqing, Schuckers, Stephanie.  2019.  Removing Personally Identifiable Information from Shared Dataset for Keystroke Authentication Research. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–7.

Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.

2020-01-20
Rasheed, Amar, Hashemi, Ray R., Bagabas, Ayman, Young, Jeffrey, Badri, Chanukya, Patel, Keyur.  2019.  Configurable Anonymous Authentication Schemes For The Internet of Things (IoT). 2019 IEEE International Conference on RFID (RFID). :1–8.
The Internet of Things (IoT) has revolutionized the way of how pervasive computing devices communicate and disseminate information over the global network. A plethora of user data is collected and logged daily into cloud-based servers. Such data can be analyzed by the IoT infrastructure to capture users' behaviors (e.g. users' location, tagging of smart home occupancy). This brings a new set of security challenges, specifically user anonymity. Existing access control and authentication technologies failed to support user anonymity. They relied on the surrendering of the device/user authentication parameters to the trusted server, which hence could be utilized by the IoT infrastructure to track users' behavioral patterns. This paper, presents two novel configurable privacy-preserving authentication schemes. User anonymity capabilities were incorporated into our proposed authentication schemes through the implementation of two crypto-based approaches (i) Zero Knowledge Proof (ZKP) and (ii) Verifiable Common Secret Encoding (VCSE). We consider a user-oriented approach when determining user anonymity. The proposed authentication schemes are dynamically capable of supporting various levels of user privacy based on the user preferences. To validate the two schemes, they were fully implemented and deployed on an IoT testbed. We have tested the performance of each proposed schemes in terms of power consumption and computation time. Based on our performance evaluation results, the proposed ZKP-based approach provides better performance compared to the VCSE-based approach.
Ren, Zhengwei, Zha, Xianye, Zhang, Kai, Liu, Jing, Zhao, Heng.  2019.  Lightweight Protection of User Identity Privacy Based on Zero-knowledge Proof. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2549–2554.
A number of solutions have been proposed to tackle the user privacy-preserving issue. Most of existing schemes, however, focus on methodology and techniques from the perspective of data processing. In this paper, we propose a lightweight privacy-preserving scheme for user identity from the perspective of data user and applied cryptography. The basic idea is to break the association relationships between User identity and his behaviors and ensure that User can access data or services as usual while the real identity will not be revealed. To this end, an interactive zero-knowledge proof protocol of identity is executed between CSP and User. Besides, a trusted third-party is introduced to manage user information, help CSP to validate User identity and establish secure channel between CSP and User via random shared key. After passing identity validation, User can log into cloud platform as usual without changing existing business process using random temporary account and password generated by CSP and sent to User by the secure channel which can further obscure the association relationships between identity and behaviors. Formal security analysis and theoretic and experimental evaluations are conducted, showing that the proposal is efficient and practical.
Guha, Krishnendu, Saha, Debasri, Chakrabarti, Amlan.  2019.  Zero Knowledge Authentication for Reuse of IPs in Reconfigurable Platforms. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :2040–2045.
A key challenge of the embedded era is to ensure trust in reuse of intellectual properties (IPs), which facilitates reduction of design cost and meeting of stringent marketing deadlines. Determining source of the IPs or their authenticity is a key metric to facilitate safe reuse of IPs. Though physical unclonable functions solves this problem for application specific integrated circuit (ASIC) IPs, authentication strategies for reconfigurable IPs (RIPs) or IPs of reconfigurable hardware platforms like field programmable gate arrays (FPGAs) are still in their infancy. Existing authentication techniques for RIPs that relies on verification of proof of authentication (PoA) mark embedded in the RIP by the RIP producers, leak useful clues about the PoA mark. This results in replication and implantation of the PoA mark in fake RIPs. This not only causes loss to authorized second hand RIP users, but also poses risk to the reputation of the RIP producers. We propose a zero knowledge authentication strategy for safe reusing of RIPs. The PoA of an RIP producer is kept secret and verification is carried out based on traversal times from the initial point to several intermediate points of the embedded PoA when the RIPs configure an FPGA. Such delays are user specific and cannot be replicated as these depend on intrinsic properties of the base semiconductor material of the FPGA, which is unique and never same as that of another FPGA. Experimental results validate our proposed mechanism. High strength even for low overhead ISCAS benchmarks, considered as PoA for experimentation depict the prospects of our proposed methodology.
Zhu, Yan, Zhang, Yi, Wang, Jing, Song, Weijing, Chu, Cheng-Chung, Liu, Guowei.  2019.  From Data-Driven to Intelligent-Driven: Technology Evolution of Network Security in Big Data Era. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:103–109.

With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.

2020-01-13
Durgapu, Swetha, Kiran, L. Venkateshwara, Madhavi, Valli.  2019.  A Novel Approach on Mobile Devices Fast Authentication and Key Agreement. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–4.
Mechanism to-Rube Goldberg invention accord is normal habituated to for apartment phones and Internet of Things. Agree and central knowledge are open to meet an unfailing turning between twosome gadgets. In ignoble fracas, factual methodologies many a time eon wait on a prefabricated solitarily pronunciation database and bear the ill effects of serene age rate. We verifiable GeneWave, a brusque gadget inspection and root assention convention for item cell phones. GeneWave mischievous accomplishes bidirectional ingenious inspection office on the physical reaction meantime between two gadgets. To evade the resolution of interim in compliance, we overshadow overseas time fragility on ware gadgets skim through steep flag location and excess time crossing out. At zigzag goal, we success out the elementary acoustic channel reaction for gadget verification. We combination an extraordinary coding pointing for virtual key assention while guaranteeing security. Consequently, two gadgets heart signal couple choice and safely concur on a symmetric key.
Yugha, R., Chithra, S..  2019.  Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.