Visible to the public Biblio

Found 879 results

Filters: Keyword is authentication  [Clear All Filters]
2020-07-10
Ra, Gyeong-Jin, Lee, Im-Yeong.  2019.  A Study on Hybrid Blockchain-based XGS (XOR Global State) Injection Technology for Efficient Contents Modification and Deletion. 2019 Sixth International Conference on Software Defined Systems (SDS). :300—305.

Blockchain is a database technology that provides the integrity and trust of the system can't make arbitrary modifications and deletions by being an append-only distributed ledger. That is, the blockchain is not a modification or deletion but a CRAB (Create-Retrieve-Append-Burn) method in which data can be read and written according to a legitimate user's access right(For example, owner private key). However, this can not delete the created data once, which causes problems such as privacy breach. In this paper, we propose an on-off block-chained Hybrid Blockchain system to separate the data and save the connection history to the blockchain. In addition, the state is changed to the distributed database separately from the ledger record, and the state is changed by generating the arbitrary injection in the XOR form, so that the history of modification / deletion of the Off Blockchain can be efficiently retrieved.

2020-06-29
Sebbar, Anass, Zkik, Karim, Baadi, Youssef, Boulmalf, Mohammed, ECH-CHERIF El KETTANI, Mohamed Dafir.  2019.  Using advanced detection and prevention technique to mitigate threats in SDN architecture. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :90–95.
Software defined networks represent a new centralized network abstraction that aims to ease configuration and facilitate applications and services deployment to manage the upper layers. However, SDN faces several challenges that slow down its implementation such as security which represents one of the top concerns of SDN experts. Indeed, SDN inherits all security matters from traditional networks and suffers from some additional vulnerability due to its centralized and unique architecture. Using traditional security devices and solutions to mitigate SDN threats can be very complicated and can negatively effect the networks performance. In this paper we propose a study that measures the impact of using some well-known security solution to mitigate intrusions on SDN's performances. We will also present an algorithm named KPG-MT adapted to SDN architecture that aims to mitigate threats such as a Man in the Middle, Deny of Services and malware-based attacks. An implementation of our algorithm based on multiple attacks' scenarios and mitigation processes will be made to prove the efficiency of the proposed framework.
2020-06-19
Gu, Chongyan, Chang, Chip Hong, Liu, Weiqiang, Yu, Shichao, Ma, Qingqing, O'Neill, Maire.  2019.  A Modeling Attack Resistant Deception Technique for Securing PUF based Authentication. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Due to practical constraints in preventing phishing through public network or insecure communication channels, simple physical unclonable function (PDF)-based authentication protocol with unrestricted queries and transparent responses is vulnerable to modeling and replay attacks. In this paper, we present a PUF-based authentication method to mitigate the practical limitations in applications where a resource-rich server authenticates a device with no strong restriction imposed on the type of PUF designs or any additional protection on the binary channel used for the authentication. Our scheme uses an active deception protocol to prevent machine learning (ML) attacks on a device. The monolithic system makes collection of challenge response pairs (CRPs) easy for model building during enrollment but prohibitively time consuming upon device deployment. A genuine server can perform a mutual authentication with the device at any time with a combined fresh challenge contributed by both the server and the device. The message exchanged in clear does not expose the authentic CRPs. The false PUF multiplexing is fortified against prediction of waiting time by doubling the time penalty for every unsuccessful authentication.

2020-06-15
Chen, JiaYou, Guo, Hong, Hu, Wei.  2019.  Research on Improving Network Security of Embedded System. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :136–138.
With the continuous development of information technology, our country has achieved great progress and development in Electronic Science and technology. Nowadays mobile embedded systems are gradually coming into people's vision. Mobile embedded system is a brand-new computer technology in the current computer technology. Now it has been widely used in enterprises. Mobile embedded system extends its functions mainly by combining the access capability of the Internet. Nowadays, embedded system network is widely welcomed by people. But for the embedded system network, there are also a variety of network attacks. Therefore, in the research process of this paper, we mainly start with the way of embedded network security and network attack, and then carry out the countermeasures to improve the network security of embedded system, which is to provide a good reference for improving the security and stability of embedded system.
2020-06-08
Tan, Li Xin, Wee, Jing Wei Shannen, Chan, Jun Rong, Soh, Wei Jie, Yap, Chern Nam.  2019.  Integrate Dragonfly Key Exchange (IETF - RFC 7664) into Arithmetic Circuit Homomorphic Encryption. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :85–851.
This is an extension of an ongoing research project on Fully Homomorphic Encryption. Arithmetic Circuit Homomorphic Encryption (ACHE) [1] was implemented based on (TFHE) Fast Fully Homomorphic Encryption over the Torus. Just like many Homomorphic Encryption methods, ACHE does not integrate with any authentication method. Thus, this was an issue that this paper attempts to resolve. This paper will focus on the implementation method of integrating RFC7664 [2] into ACHE. Next, the paper will further discuss latency incurred due to key generation, the latency of transmission of public and private keys. Last but not least, the paper will also discuss the key size generated and its significance.
Seta, Henki, Wati, Theresia, Kusuma, Ilham Cahya.  2019.  Implement Time Based One Time Password and Secure Hash Algorithm 1 for Security of Website Login Authentication. 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :115–120.
The use of information systems is a solutions to support the operations of the institution. In order to access information systems in accordance with their access rights, usually the user will enter a username and password as the authentication process. However, this has a weakness if the other side is cheating by sniffing or tapping user passwords. This makes the password unsafe to use for access information systems. If the username and password if it is stolen, abuse will occur for the crime or theft of the owner's identity accounts like name, email, telephone number, biological mother's name, account number and others. One solution is to apply two factor authentication method which is Time-Based One Time Password (TOTP) and Secure Algorithm Hash Algorithm 1 (SHA1). With this method, the system Authentication of a website or site does not only depend on the username and password to enter the account user but the user will get a token or code which is used to log in to the user's account. After testing hundred times, the authentication process who use Two Factor Authentication can tackle possible attacks on abuse o user access rights. Time Based Application One Time Password and Secure Hash Algorithm 1 Generate code that can't be the same because of the code it can only be used once with a time limit certain so it is difficult to guess. SHA1 with long input different strings will produce output with a fixed length string of 160 bits. Test results are obtained the results that 30 seconds is enough to prevent hackers log in and take over the account without permission and also prove that two-factor authentication can increase the security of the authentication process well. The time above is the result of testing the process user authentication until the hacker sniffing against tokens to try to take over the account.
2020-06-02
Ostrev, Dimiter.  2019.  Composable, Unconditionally Secure Message Authentication without any Secret Key. 2019 IEEE International Symposium on Information Theory (ISIT). :622—626.

We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context.

2020-06-01
Zhang, Tianchen, Zhang, Taimin, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Cuckoo-RPL: Cuckoo Filter based RPL for Defending AMI Network from Blackhole Attacks. 2019 Chinese Control Conference (CCC). :8920—8925.

Advanced metering infrastructure (AMI) is a key component in the smart grid. Transmitting data robustly and reliably between the tremendous smart meters in the AMI is one of the most crucial tasks for providing various services in smart grid. Among the many efforts for designing practical routing protocols for the AMI, the Routing Protocol for Low-Power and Lossy Networks (RPL) proposed by the IETF ROLL working group is considered the most consolidated candidate. Resent research has shown cyber attacks such as blackhole attack and version number attack can seriously damage the performance of the network implementing RPL. The main reason that RPL is vulnerable to these kinds of attacks is the lack an authentication mechanism. In this paper, we study the impact of blackhole attacks on the performance of the AMI network and proposed a new blackhole attack that can bypass the existing defense mechanism. Then, we propose a cuckoo filter based RPL to defend the AMI network from blackhole attacks. We also give the security analysis of the proposed method.

Khorev, P.B..  2018.  Authenticate Users with Their Work on the Internet. 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). :1–4.
Examines the shortcomings of existing methods of user authentication when accessing remote information systems. Proposed method of multi-factor authentication based on validation of knowledge of a secret password and verify that the habits and preferences of Internet user's interests, defined by registration in the system. Identifies the language and tools implementation of the proposed authentication algorithm.
Dhal, Subhasish, Bhuwan, Vaibhav.  2018.  Cryptanalysis and improvement of a cloud based login and authentication protocol. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1–6.
Outsourcing services to cloud server (CS) becomes popular in these years. However, the outsourced services often involve with sensitive activity and CS naturally becomes a target of varieties of attacks. Even worse, CS itself can misuse the outsourced services for illegal profit. Traditional online banking system also can make use of a cloud framework to provide economical and high-speed online services to the consumers, which makes the financial dealing easy and convenient. Most of the banking organizations provide services through passbook, ATM, mobile banking, electronic banking (e-banking) etc. Among these, the e-banking and mobile banking are more convenient and becomes essential. Therefore, it is critical to provide an efficient, reliable and more importantly, secure e-banking services to the consumers. The cloud environment is suitable paradigm to a new, small and medium scale banking organization as it eliminates the requirement for them to start with small resources and increase gradually as the service demand rises. However, security is one of the main concerns since it deals with many sensitive data of the valuable customers. In addition to this, the access of various data needs to be restricted to prevent any unauthorized transaction. Nagaraju et al. presented a framework to achieve reliability and security in public cloud based online banking using multi-factor authentication concept. Unfortunately, the login and authentication protocol of this framework is prone to impersonation attack. In this paper, we have revised the framework to avoid this attack.
Vegh, Laura.  2018.  Cyber-physical systems security through multi-factor authentication and data analytics. 2018 IEEE International Conference on Industrial Technology (ICIT). :1369–1374.
We are living in a society where technology is present everywhere we go. We are striving towards smart homes, smart cities, Internet of Things, Internet of Everything. Not so long ago, a password was all you needed for secure authentication. Nowadays, even the most complicated passwords are not considered enough. Multi-factor authentication is gaining more and more terrain. Complex system may also require more than one solution for real, strong security. The present paper proposes a framework based with MFA as a basis for access control and data analytics. Events within a cyber-physical system are processed and analyzed in an attempt to detect, prevent and mitigate possible attacks.
Jacomme, Charlie, Kremer, Steve.  2018.  An Extensive Formal Analysis of Multi-factor Authentication Protocols. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :1–15.
Passwords are still the most widespread means for authenticating users, even though they have been shown to create huge security problems. This motivated the use of additional authentication mechanisms used in so-called multi-factor authentication protocols. In this paper we define a detailed threat model for this kind of protocols: while in classical protocol analysis attackers control the communication network, we take into account that many communications are performed over TLS channels, that computers may be infected by different kinds of malwares, that attackers could perform phishing, and that humans may omit some actions. We formalize this model in the applied pi calculus and perform an extensive analysis and comparison of several widely used protocols - variants of Google 2-step and FIDO's U2F. The analysis is completely automated, generating systematically all combinations of threat scenarios for each of the protocols and using the P ROVERIF tool for automated protocol analysis. Our analysis highlights weaknesses and strengths of the different protocols, and allows us to suggest several small modifications of the existing protocols which are easy to implement, yet improve their security in several threat scenarios.
Giełczyk, Agata, Choraś, Michał, Kozik, Rafał.  2018.  Hybrid Feature Extraction for Palmprint-Based User Authentication. 2018 International Conference on High Performance Computing Simulation (HPCS). :629–633.
Biometry is often used as a part of the multi-factor authentication in order to improve the security of IT systems. In this paper, we propose the palmprint-based solution for user identity verification. In particular, we present a new approach to feature extraction. The proposed method is based both on texture and color information. Our experiments show that using the proposed hybrid features allows for achieving satisfactory accuracy without increasing requirements for additional computational resources. It is important from our perspective since the proposed method is dedicated to smartphones and other handhelds in mobile verification scenarios.
Pomak, Wiphop, Limpiyakom, Yachai.  2018.  Enterprise WiFi Hotspot Authentication with Hybrid Encryption on NFC- Enabled Smartphones. 2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC). :247–250.
Nowadays, some workplaces have adopted the policy of BYOD (bring your own device) that permits employees to bring personally owned devices, and to use those devices to access company information and applications. Especially, small devices like smartphones are widely used due to the greater mobility and connectivity. A majority of organizations provide the wireless local area network which is necessary for small devices and business data transmission. The resources access through Wi-Fi network of the organization needs intense restriction. WPA2 Enterprise with 802.1X standard is typically introduced to handle user authentication on the network using the EAP framework. However, credentials management for all users is a hassle for administrators. Strong authentication provides higher security whereas the difficulty of deployment is still open issues. This research proposes the utility of Near Field Communication to securely transmit certificate data that rely on the hybrid cryptosystem. The approach supports enterprise Wi-Fi hotspot authentication based on WPA2-802.1X model with the EAP-TLS method. It also applies multi-factor authentication for enhancing the security of networks and users. The security analysis and experiment on establishing connection time were conducted to evaluate the presented approach.
Alizai, Zahoor Ahmed, Tareen, Noquia Fatima, Jadoon, Iqra.  2018.  Improved IoT Device Authentication Scheme Using Device Capability and Digital Signatures. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :1–5.
Internet of Things (IoT) device authentication is weighed as a very important step from security perspective. Privacy and security of the IoT devices and applications is the major issue. From security perspective, important issue that needs to be addressed is the authentication mechanism, it has to be secure from different types of attacks and is easy to implement. The paper gives general idea about how different authentication mechanisms work, and then secure and efficient multi-factor device authentication scheme idea is proposed. The proposed scheme idea uses digital signatures and device capability to authenticate a device. In the proposed scheme device will only be allowed into the network if it is successfully authenticated through multi-factor authentication otherwise the authentication process fails and whole authentication process will restart. By analyzing the proposed scheme idea, it can be seen that the scheme is efficient and has less over head. The scheme not only authenticates the device very efficiently through multi-factor authentication but also authenticates the authentication server with the help of digital signatures. The proposed scheme also mitigates the common attacks like replay and man in the middle because of nonce and timestamp.
Utomo, Subroto Budhi, Hendradjaya, Bayu.  2018.  Multifactor Authentication on Mobile Secure Attendance System. 2018 International Conference on ICT for Smart Society (ICISS). :1–5.
BYOD (Bring Your Own Device) trends allows employees to use the smartphone as a tool in everyday work and also as an attendance device. The security of employee attendance system is important to ensure that employees do not commit fraud in recording attendance and when monitoring activities at working hours. In this paper, we propose a combination of fingerprint, secure android ID, and GPS as authentication factors, also addition of anti emulator and anti fake location module turn Mobile Attendance System into Mobile Secure Attendance System. Testing based on scenarios that have been adapted to various possible frauds is done to prove whether the system can minimize the occurrence of fraud in attendance recording and monitoring of employee activities.
da Silva Andrade, Richardson B., Souto Rosa, Nelson.  2019.  MidSecThings: Assurance Solution for Security Smart Homes in IoT. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :171–178.
The interest over building security-based solutions to reduce the vulnerability exploits and mitigate the risks associated with smart homes in IoT is growing. However, our investigation identified to architect and implement distributed security mechanisms is still a challenge because is necessary to handle security and privacy in IoT middleware with a strong focus. Our investigation, it was identified the significant proportion of the systems that did not address security and did not describe the security approach in any meaningful detail. The idea proposed in this work is to provide middleware aim to implement security mechanisms in smart home and contribute as how guide to beginner developers' IoT middleware. The advantages of using MidSecThings are to avoid leakage data, unavailable service, unidentification action and not authorized access over IoT devices in smart home.
Ansari, Abdul Malik, Hussain, Muzzammil.  2018.  Middleware Based Node Authentication Framework for IoT Networks. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :31–35.
Security and protection are among the most squeezing worries that have developed with the Internet. As systems extended and turned out to be more open, security hones moved to guarantee insurance of the consistently developing Internet, its clients, and information. Today, the Internet of Things (IoT) is rising as another sort of system that associates everything to everybody, all over. Subsequently, the edge of resistance for security and protection moves toward becoming smaller on the grounds that a break may prompt vast scale irreversible harm. One element that eases the security concerns is validation. While diverse confirmation plans are utilized as a part of vertical system storehouses, a typical personality and validation plot is expected to address the heterogeneity in IoT and to coordinate the distinctive conventions exhibit in IoT. In this paper, a light weight secure framework is proposed. The proposed framework is analyzed for performance with security mechanism and found to be better over critical parameters.
Parikh, Sarang, Sanjay, H A, Shastry, K. Aditya, Amith, K K.  2019.  Multimodal Data Security Framework Using Steganography Approaches. 2019 International Conference on Communication and Electronics Systems (ICCES). :1997–2002.
Information or data is a very crucial resource. Hence securing the information becomes a critical task. Transfer and Communication mediums via which we send this information do not provide data security natively. Therefore, methods for data security have to be devised to protect the information from third party and unauthorized users. Information hiding strategies like steganography provide techniques for data encryption so that the unauthorized users cannot read it. This work is aimed at creating a novel method of Augmented Reality Steganography (ARSteg). ARSteg uses cloud for image and key storage that does not alter any attributes of an image such as size and colour scheme. Unlike, traditional algorithms such as Least Significant Bit (LSB) which changes the attributes of images, our approach uses well established encryption algorithm such as Advanced Encryption Standard (AES) for encryption and decryption. This system is further secured by many alternative means such as honey potting, tracking and heuristic intrusion detection that ensure that the transmitted messages are completely secure and no intrusions are allowed. The intrusions are prevented by detecting them immediately and neutralizing them.
2020-05-26
Hamamreh, Rushdi A., Ayyad, Mohammad, Jamoos, Mohammad.  2019.  RAD: Reinforcement Authentication DYMO Protocol for MANET. 2019 International Conference on Promising Electronic Technologies (ICPET). :136–141.
Mobile ad hoc network (MANET) does not have fixed infrastructure centralized server which manage the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations.
2020-05-22
Wu, Boyang, Li, Hewu, Wu, Qian.  2019.  Extending Authentication Mechanism to Cooperate with Accountable Address Assignment. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1—7.

Lack of effective accountability mechanisms brings a series of security problems for Internet today. In Next Generation Internet based on IPv6, the system of identity authentication and IP verification is the key to accounting ability. Source Address Validation Improvement (SAVI) can protect IP source addresses from being faked. But without identity authentication mechanism and certain relationship between IP and accountable identity, the accountability is still unreliable. To solve this problem, most research focus on embedding accountable identity into IP address which need either changing DHCP client or twice DHCP request process due to the separate process of user authentication and address assignment. Different from previous research, this paper first analyzes the problems and requirements of combining Web Portal or 802.1X, two main identity authentication mechanism (AAA), with the accountable address assignment in SAVI frame-work. Then a novel Cooperative mechanism for Accountable IP address assignment (CAIP) is proposed based on 802.1X and SAVI, which takes into account the validation of IP address, the authenticity and accountability of identity at the same time. Finally, we build up prototype system for both Fat AP and Thin AP wireless scenarios and simulate the performance of CAIP through large-scale campus networks' data logs. The experiment result shows that the IP addresses and identities in CAIP are protective and accountable. Compared with other previous research, CAIP is not only transparent to the terminals and networks, but also low impact on network equipment, which makes CAIP easy deployment with high compatibility and low cost.

2020-05-15
Kornaros, Georgios, Tomoutzoglou, Othon, Coppola, Marcello.  2018.  Hardware-Assisted Security in Electronic Control Units: Secure Automotive Communications by Utilizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro. 38:63—74.
With emerging smart automotive technologies, vehicle-to-vehicle communications, and software-dominated enhancements for enjoyable driving and advanced driver assistance systems, the complexity of providing guarantees in terms of security, trust, and privacy in a modern cyber-enabled automotive system is significantly elevated. New threat models emerge that require efficient system-level countermeasures. This article introduces synergies between on- and off-chip networking techniques to ensure secure execution environments for electronic control units. The proposed mechanisms consist of hardware firewalling and on-chip network physical isolation, whose mechanisms are combined with system-wide cryptographic techniques in automotive controller area network (CAN)-bus communications to provide authentication and confidentiality.
2020-05-11
Xue, Kaiping, Zhang, Xiang, Xia, Qiudong, Wei, David S.L., Yue, Hao, Wu, Feng.  2018.  SEAF: A Secure, Efficient and Accountable Access Control Framework for Information Centric Networking. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2213–2221.
Information Centric Networking (ICN) has been regarded as an ideal architecture for the next-generation network to handle users' increasing demand for content delivery with in-network cache. While making better use of network resources and providing better delivery service, an effective access control mechanism is needed due to wide dissemination of contents. However, in the existing solutions, making cache-enabled routers or content providers authenticate users' requests causes high computation overhead and unnecessary delay. Also, straightforward utilization of advanced encryption algorithms increases the opportunities for DoS attacks. Besides, privacy protection and service accountability are rarely taken into account in this scenario. In this paper, we propose a secure, efficient, and accountable access control framework, called SEAF, for ICN, in which authentication is performed at the network edge to block unauthorized requests at the very beginning. We adopt group signature to achieve anonymous authentication, and use hash chain technique to greatly reduce the overhead when users make continuous requests for the same file. Furthermore, the content providers can affirm the service amount received from the network and extract feedback information from the signatures and hash chains. By formal security analysis and the comparison with related works, we show that SEAF achieves the expected security goals and possesses more useful features. The experimental results also demonstrate that our design is efficient for routers and content providers, and introduces only slight delay for users' content retrieval.
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
2020-05-04
Karmakar, Kallol Krishna, Varadharajan, Vijay, Nepal, Surya, Tupakula, Uday.  2019.  SDN Enabled Secure IoT Architecture. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :581–585.
The Internet of Things (IoT) is increasingly being used in applications ranging from precision agriculture to critical national infrastructure by deploying a large number of resource-constrained devices in hostile environments. These devices are being exploited to launch attacks in cyber systems. As a result, security has become a significant concern in the design of IoT based applications. In this paper, we present a security architecture for IoT networks by leveraging the underlying features supported by Software Defined Networks (SDN). Our security architecture restricts network access to authenticated IoT devices. We use fine granular policies to secure the flows in the IoT network infrastructure and provide a lightweight protocol to authenticate IoT devices. Such an integrated security approach involving authentication of IoT devices and enabling authorized flows can help to protect IoT networks from malicious IoT devices and attacks.