Visible to the public Biblio

Filters: Keyword is central authority  [Clear All Filters]
2020-07-24
Li, Qi, Ma, Jianfeng, Xiong, Jinbo, Zhang, Tao, Liu, Ximeng.  2013.  Fully Secure Decentralized Key-Policy Attribute-Based Encryption. 2013 5th International Conference on Intelligent Networking and Collaborative Systems. :220—225.

In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.

Zhang, Leyou, Liang, Pengfei, Mu, Yi.  2018.  Improving Privacy-Preserving and Security for Decentralized Key-Policy Attributed-Based Encryption. IEEE Access. 6:12736—12745.
Decentralized attribute-based encryption (ABE) is an efficient and flexible multi-authority attribute-based encryption system, since it does not requires the central authority and does not need to cooperate among the authorities for creating public parameters. Unfortunately, recent works show that the reality of the privacy preserving and security in almost well-known decentralized key policy ABE (KP-ABE) schemes are doubtful. How to construct a decentralized KP-ABE with the privacy-preserving and user collusion avoidance is still a challenging problem. Most recently, Y. Rahulamathavam et al. proposed a decentralized KP ABE scheme to try avoiding user collusion and preserving the user's privacy. However, we exploit the vulnerability of their scheme in this paper at first and present a collusion attack on their decentralized KP-ABE scheme. The attack shows the user collusion cannot be avoided. Subsequently, a new privacy-preserving decentralized KP-ABE is proposed. The proposed scheme avoids the linear attacks at present and achieves the user collusion avoidance. We also show that the security of the proposed scheme is reduced to decisional bilinear Diffie-Hellman assumption. Finally, numerical experiments demonstrate the efficiency and validity of the proposed scheme.
2020-05-26
Sbai, Oussama, Elboukhari, Mohamed.  2018.  Simulation of MANET's Single and Multiple Blackhole Attack with NS-3. 2018 IEEE 5th International Congress on Information Science and Technology (CiSt). :612–617.
Mobile Ad-hoc Networks (MANETs) have gained popularity both in research and in industrial fields. This is due to their ad hoc nature, easy deployment thanks to the lack of fixed infrastructure, self-organization of its components, dynamic topologies and the absence of any central authority for routing. However, MANETs suffer from several vulnerabilities such as battery power, limited memory space, and physical protection of network nodes. In addition, MANETs are sensitive to various attacks that threaten network security like Blackhole attack in its different implementation (single and multiple). In this article, we present the simulation results of single and multiple Blackhole attack in AODV and OLSR protocols on using NS-3.27 simulator. In this simulation, we took into consideration the density of the network described by the number of nodes included in the network, the speed of the nodes, the mobility model and even we chose the IEEE 802.11ac protocol for the pbysicallayer, in order to have a simulation, which deals with more general and more real scenarios. To be able to evaluate the impact of the attack on the network, the Packet delivery rate, Routing overhead, Throughput and Average End to End delay have been chosen as metrics for performance evaluation.
2018-06-11
Chen, C. W., Chang, S. Y., Hu, Y. C., Chen, Y. W..  2017.  Protecting vehicular networks privacy in the presence of a single adversarial authority. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

In vehicular networks, each message is signed by the generating node to ensure accountability for the contents of that message. For privacy reasons, each vehicle uses a collection of certificates, which for accountability reasons are linked at a central authority. One such design is the Security Credential Management System (SCMS) [1], which is the leading credential management system in the US. The SCMS is composed of multiple components, each of which has a different task for key management, which are logically separated. The SCMS is designed to ensure privacy against a single insider compromise, or against outside adversaries. In this paper, we demonstrate that the current SCMS design fails to achieve its design goal, showing that a compromised authority can gain substantial information about certificate linkages. We propose a solution that accommodates threshold-based detection, but uses relabeling and noise to limit the information that can be learned from a single insider adversary. We also analyze our solution using techniques from differential privacy and validate it using traffic-simulator based experiments. Our results show that our proposed solution prevents privacy information leakage against the compromised authority in collusion with outsider attackers.

2018-05-30
Liu, Y., Li, R., Liu, X., Wang, J., Tang, C., Kang, H..  2017.  Enhancing Anonymity of Bitcoin Based on Ring Signature Algorithm. 2017 13th International Conference on Computational Intelligence and Security (CIS). :317–321.

Bitcoin is a decentralized digital currency, widely used for its perceived anonymity property, and has surged in popularity in recent years. Bitcoin publishes the complete transaction history in a public ledger, under pseudonyms of users. This is an alternative way to prevent double-spending attack instead of central authority. Therefore, if pseudonyms of users are attached to their identities in real world, the anonymity of Bitcoin will be a serious vulnerability. It is necessary to enhance anonymity of Bitcoin by a coin mixing service or other modifications in Bitcoin protocol. But in a coin mixing service, the relationship among input and output addresses is not hidden from the mixing service provider. So the mixing server still has the ability to track the transaction records of Bitcoin users. To solve this problem, We present a new coin mixing scheme to ensure that the relationship between input and output addresses of any users is invisible for the mixing server. We make use of a ring signature algorithm to ensure that the mixing server can't distinguish specific transaction from all these addresses. The ring signature ensures that a signature is signed by one of its users in the ring and doesn't leak any information about who signed it. Furthermore, the scheme is fully compatible with existing Bitcoin protocol and easily to scale for large amount of users.

2015-05-06
Khatri, P..  2014.  Using identity and trust with key management for achieving security in Ad hoc Networks. Advance Computing Conference (IACC), 2014 IEEE International. :271-275.

Communication in Mobile Ad hoc network is done over a shared wireless channel with no Central Authority (CA) to monitor. Responsibility of maintaining the integrity and secrecy of data, nodes in the network are held responsible. To attain the goal of trusted communication in MANET (Mobile Ad hoc Network) lot of approaches using key management has been implemented. This work proposes a composite identity and trust based model (CIDT) which depends on public key, physical identity, and trust of a node which helps in secure data transfer over wireless channels. CIDT is a modified DSR routing protocol for achieving security. Trust Factor of a node along with its key pair and identity is used to authenticate a node in the network. Experience based trust factor (TF) of a node is used to decide the authenticity of a node. A valid certificate is generated for authentic node to carry out the communication in the network. Proposed method works well for self certification scheme of a node in the network.

Khatri, P..  2014.  Using identity and trust with key management for achieving security in Ad hoc Networks. Advance Computing Conference (IACC), 2014 IEEE International. :271-275.

Communication in Mobile Ad hoc network is done over a shared wireless channel with no Central Authority (CA) to monitor. Responsibility of maintaining the integrity and secrecy of data, nodes in the network are held responsible. To attain the goal of trusted communication in MANET (Mobile Ad hoc Network) lot of approaches using key management has been implemented. This work proposes a composite identity and trust based model (CIDT) which depends on public key, physical identity, and trust of a node which helps in secure data transfer over wireless channels. CIDT is a modified DSR routing protocol for achieving security. Trust Factor of a node along with its key pair and identity is used to authenticate a node in the network. Experience based trust factor (TF) of a node is used to decide the authenticity of a node. A valid certificate is generated for authentic node to carry out the communication in the network. Proposed method works well for self certification scheme of a node in the network.