Visible to the public Biblio

Filters: Keyword is mobile nodes  [Clear All Filters]
2019-01-21
Elmahdi, E., Yoo, S., Sharshembiev, K..  2018.  Securing data forwarding against blackhole attacks in mobile ad hoc networks. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :463–467.

A mobile ad hoc network (MANET) is vulnerable to many types of attacks. Thus, security has turned out to be an important factor to facilitate secured communication between mobile nodes in a wireless environment. In this paper we propose a new approach to provide reliable and secure data transmission in MANETs under possible blackhole attacks based on ad hoc on-demand multipath distance vector (AOMDV) protocol and homomorphic encryption scheme for security. The performance of the proposed scheme is stable but that of AOMDV is found to be degrading with the intrusion of malicious nodes in the network. Simulation results show the improvement of packet delivery ratio and network throughput in the presence of blackhole nodes in our proposed scheme.

2018-12-03
Catania, E., Corte, A. La.  2018.  Location Privacy in Virtual Cell-Equipped Ultra-Dense Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

Ultra-dense Networks are attracting significant interest due to their ability to provide the next generation 5G cellular networks with a high data rate, low delay, and seamless coverage. Several factors, such as interferences, energy constraints, and backhaul bottlenecks may limit wireless networks densification. In this paper, we study the effect of mobile node densification, access node densification, and their aggregation into virtual entities, referred to as virtual cells, on location privacy. Simulations show that the number of tracked mobile nodes might be statistically reduced up to 10 percent by implementing virtual cells. Moreover, experiments highlight that success of tracking attacks has an inverse relationship to the number of moving nodes. The present paper is a preliminary attempt to analyse the effectiveness of cell virtualization to mitigate location privacy threats in ultra-dense networks.

2018-06-20
Sasirekha, D., Radha, N..  2017.  Secure and attack aware routing in mobile ad hoc networks against wormhole and sinkhole attacks. 2017 2nd International Conference on Communication and Electronics Systems (ICCES). :505–510.

The inherent characteristics of Mobile Ad hoc network (MANET) such as dynamic topology, limited bandwidth, limited power supply, infrastructure less network make themselves attractive for a wide spectrum of applications and vulnerable to security attacks. Sinkhole attack is the most disruptive routing layer attack. Sinkhole nodes attract all the traffic towards them to setup further active attacks such as Black hole, Gray hole and wormhole attacks. Sinkhole nodes need to be isolated from the MANET as early as possible. In this paper, an effective mechanism is proposed to prevent and detect sinkhole and wormhole attacks in MANET. The proposed work detects and punishes the attacker nodes using different techniques such as node collusion technique, which classifies a node as an attacker node only with the agreement with the neighboring nodes. When the node suspects the existence of attacker or sinkhole node in the path, it joins together with neighboring nodes to determine the sinkhole node. In the prevention of routing attacks, the proposed system introduces a route reserve method; new routes learnt are updated in the routing table of the node only after ensuring that the route does not contain the attacker nodes. The proposed system effectively modifies Ad hoc on demand Distance Vector (AODV) with the ability to detect and prevent the sinkhole and wormhole attack, so the modified protocol is named as Attack Aware Alert (A3AODV). The experiments are carried out in NS2 simulator, and the result shows the efficiency in terms of packet delivery ratio and routing overhead.

Naik, T., Khatiwala, F., Sakadasariya, A..  2017.  Search for secure data transmission in MANET: A review. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :573–575.

Mobile Ad-hoc Network (MANET) comprise of independent ambulant nodes with no any stable infrastructure. All mobile nodes are co-operatively transfer their data packets to different mobile nodes in the network. Mobile nodes are depends on intermediate nodes when transmission range beyond limit i.e. multi hop network. As MANET is a highly dynamic network, mobile nodes can leave and join a network at anytime. Security is the biggest issue in MANET as MANET is infrastructure-less and autonomous. In MANET, correspondence between two mobile nodes is performed by routing protocols wherein every versatile node can make directly communication with other versatile node. In the event that both portable nodes are inside a transmission range of each other, then they can straightforwardly make communication with each other. Otherwise, transmission is done through the intermediate node. The nature of its wireless nature is also additionally turns into the purpose of its greatest vulnerability. In this manner, diminishing the confidence level of the system as it appropriate to availability, integrity, reliability and privacy concerns. There are different routing protocols for providing security that are designed based on various cryptographic techniques. To obtain a rapid knowledge of security design, we are giving a review on different cryptographic techniques to secure MANET. In this review, we presents security techniques and protocols related to cryptographic techniques.

2018-05-09
Ameur, S. B., Smaoui, S., Zarai, F..  2017.  Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). :1314–1321.

NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.

Geetanjali, Gupta, J..  2017.  Improved approach of co-operative gray hole attack prevention monitored by meta heuristic on MANET. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :356–361.

Mobile ad-hoc network (MANET) contains various wireless movable nodes which can communicate with each other and they don't require any centralized administrator or network infrastructure and also can communicate with full capacity because it is composed of mobile nodes. They transmit data to each other with the help of intermediate nodes by establishing a path. But sometime malicious node can easily enter in network due to the mobility of nodes. That malicious node can harm the network by dropping the data packets. These type of attack is called gray hole attack. For detection and prevention from this type of attack a mechanism is proposed in this paper. By using network simulator, the simulation will be carried out for reporting the difficulties of prevention and detection of multiple gray hole attack in the Mobile ad-hoc network (MANET). Particle Swarm Optimization is used in this paper. Because of ad-hoc nature it observers the changing values of the node, if the value is infinite then node has been attacked and it prevents other nodes from sending data to that node. In this paper, we present possible solutions to prevent the network. Firstly, find more than one route to transmit packets to destination. Second, we provide minimum time delay to deliver the packet. The simulation shows the higher throughput, less time delay and less packet drop.

2018-04-11
Tripathy, B. K., Sudhir, A., Bera, P., Rahman, M. A..  2017.  Formal Modelling and Verification of Requirements of Adaptive Routing Protocol for Mobile Ad-Hoc Network. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 1:548–556.

A group of mobile nodes with limited capabilities sparsed in different clusters forms the backbone of Mobile Ad-Hoc Networks (MANET). In such situations, the requirements (mobility, performance, security, trust and timing constraints) vary with change in context, time, and geographic location of deployment. This leads to various performance and security challenges which necessitates a trade-off between them on the application of routing protocols in a specific context. The focus of our research is towards developing an adaptive and secure routing protocol for Mobile Ad-Hoc Networks, which dynamically configures the routing functions using varying contextual features with secure and real-time processing of traffic. In this paper, we propose a formal framework for modelling and verification of requirement constraints to be used in designing adaptive routing protocols for MANET. We formally represent the network topology, behaviour, and functionalities of the network in SMT-LIB language. In addition, our framework verifies various functional, security, and Quality-of-Service (QoS) constraints. The verification engine is built using the Yices SMT Solver. The efficacy of the proposed requirement models is demonstrated with experimental results.

Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  Performance Evaluation of RPL Protocol under Mobile Sybil Attacks. 2017 IEEE Trustcom/BigDataSE/ICESS. :1049–1055.

In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.

2018-02-02
Noguchi, T., Yamamoto, T..  2017.  Black hole attack prevention method using dynamic threshold in mobile ad hoc networks. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :797–802.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of black hole node detection rate, throughput, and packet delivery rate.

2015-12-07
Wei Liu, Ming Yu.  2014.  AASR: Authenticated Anonymous Secure Routing for MANETs in Adversarial Environments. Vehicular Technology, IEEE Transactions on. 63:4585-4593.

Anonymous communications are important for many of the applications of mobile ad hoc networks (MANETs) deployed in adversary environments. A major requirement on the network is the ability to provide unidentifiability and unlinkability for mobile nodes and their traffic. Although a number of anonymous secure routing protocols have been proposed, the requirement is not fully satisfied. The existing protocols are vulnerable to the attacks of fake routing packets or denial-of-service broadcasting, even the node identities are protected by pseudonyms. In this paper, we propose a new routing protocol, i.e., authenticated anonymous secure routing (AASR), to satisfy the requirement and defend against the attacks. More specifically, the route request packets are authenticated by a group signature, to defend against potential active attacks without unveiling the node identities. The key-encrypted onion routing with a route secret verification message is designed to prevent intermediate nodes from inferring a real destination. Simulation results have demonstrated the effectiveness of the proposed AASR protocol with improved performance as compared with the existing protocols.

2015-05-06
Oliveira Vasconcelos, R., Nery e Silva, L.D., Endler, M..  2014.  Towards efficient group management and communication for large-scale mobile applications. Pervasive Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference on. :551-556.

Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.

Zhuo Lu, Wenye Wang, Wang, C..  2014.  How can botnets cause storms? Understanding the evolution and impact of mobile botnets INFOCOM, 2014 Proceedings IEEE. :1501-1509.

A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests, even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified to decrease at most on the order of 1/√B, where B is the network bandwidth. This result reveals that although increasing network bandwidth can help with mobile services; at the same time, it can indeed escalate the risk for services being disrupted by mobile botnets.

Turguner, C..  2014.  Secure fault tolerance mechanism of wireless Ad-Hoc networks with mobile agents. Signal Processing and Communications Applications Conference (SIU), 2014 22nd. :1620-1623.

Mobile Ad-Hoc Networks are dynamic and wireless self-organization networks that many mobile nodes connect to each other weakly. To compare with traditional networks, they suffer failures that prevent the system from working properly. Nevertheless, we have to cope with many security issues such as unauthorized attempts, security threats and reliability. Using mobile agents in having low level fault tolerance ad-hoc networks provides fault masking that the users never notice. Mobile agent migration among nodes, choosing an alternative paths autonomous and, having high level fault tolerance provide networks that have low bandwidth and high failure ratio, more reliable. In this paper we declare that mobile agents fault tolerance peculiarity and existing fault tolerance method based on mobile agents. Also in ad-hoc networks that need security precautions behind fault tolerance, we express the new model: Secure Mobil Agent Based Fault Tolerance Model.

Chaudhary, A., Kumar, A., Tiwari, V.N..  2014.  A reliable solution against Packet dropping attack due to malicious nodes using fuzzy Logic in MANETs. Optimization, Reliabilty, and Information Technology (ICROIT), 2014 International Conference on. :178-181.

The recent trend of mobile ad hoc network increases the ability and impregnability of communication between the mobile nodes. Mobile ad Hoc networks are completely free from pre-existing infrastructure or authentication point so that all the present mobile nodes which are want to communicate with each other immediately form the topology and initiates the request for data packets to send or receive. For the security perspective, communication between mobile nodes via wireless links make these networks more susceptible to internal or external attacks because any one can join and move the network at any time. In general, Packet dropping attack through the malicious node (s) is one of the possible attack in the mobile ad hoc network. This paper emphasized to develop an intrusion detection system using fuzzy Logic to detect the packet dropping attack from the mobile ad hoc networks and also remove the malicious nodes in order to save the resources of mobile nodes. For the implementation point of view Qualnet simulator 6.1 and Mamdani fuzzy inference system are used to analyze the results. Simulation results show that our system is more capable to detect the dropping attacks with high positive rate and low false positive.