Biblio
Cloud computing has included an essential part of its industry and statistics garage is the main service provided, where a huge amount of data can be stored in a virtual server. Storing data in public platforms may be vulnerable to threats. Consequently, the obligation of secure usage and holistic backup of statistics falls upon the corporation providers. Subsequently, an affordable and compliant mechanism of records auditing that permits groups to audit the facts stored in shared clouds whilst acting quick and trouble- unfastened healing might be a fairly sought-after cloud computing task concept. There is a lot of advantage in growing this domain and there is considerable precedence to follow from the examples of dropbox, google power among others.
Fog Computing was envisioned to solve problems like high latency, mobility, bandwidth, etc. that were introduced by Cloud Computing. Fog Computing has enabled remotely connected IoT devices and sensors to be managed efficiently. Nonetheless, the Fog-Cloud paradigm suffers from various security and privacy related problems. Blockchain ensures security in a trustless way and therefore its applications in various fields are increasing rapidly. In this work, we propose a Fog-Cloud architecture that enables Blockchain to ensure security, scalability, and privacy of remotely connected IoT devices. Furthermore, our proposed architecture also efficiently manages common problems like ever-increasing latency and energy consumption that comes with the integration of Blockchain in Fog-Cloud architecture.
The development and popularization of big data technology bring more convenience to users, it also bring a series of computer network security problems. Therefore, this paper will briefly analyze the network security threats faced by users under the background of big data, and then combine the application function of computer network security defense system based on big data to propose an architecture design of computer network security defense system based on big data.
The utilization of "cloud storage services (CSS)", empowering people to store their data in cloud and avoid from maintenance cost and local data storage. Various data integrity auditing (DIA) frameworks are carried out to ensure the quality of data stored in cloud. Mostly, if not all, of current plans, a client requires to utilize his private key (PK) to generate information authenticators for knowing the DIA. Subsequently, the client needs to have hardware token to store his PK and retain a secret phrase to actuate this PK. In this hardware token is misplaced or password is forgotten, the greater part of existing DIA plans would be not able to work. To overcome this challenge, this research work suggests another DIA without "private key storage (PKS)"plan. This research work utilizes biometric information as client's fuzzy private key (FPK) to evade utilizing hardware token. In the meantime, the plan might in any case viably complete the DIA. This research work uses a direct sketch with coding and mistake correction procedures to affirm client identity. Also, this research work plan another mark conspire that helps block less. Verifiability, yet in addition is viable with linear sketch Keywords– Data integrity auditing (DIA), Cloud Computing, Block less Verifiability, fuzzy biometric data, secure cloud storage (SCS), key exposure resilience (KER), Third Party Auditor (TPA), cloud audit server (CAS), cloud storage server (CSS), Provable Data Possession (PDP)