Biblio
Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.
In this paper, we propose a lightweight multi-receiver encryption scheme for the device to device communications on Internet of Things (IoT) applications. In order for the individual user to control the disclosure range of his/her own data directly and to prevent sensitive personal data disclosure to the trusted third party, the proposed scheme uses device-generated public keys. For mutual authentication, third party generates Schnorr-like lightweight identity-based partial private keys for users. The proposed scheme provides source authentication, message integrity, replay-attack prevention and implicit user authentication. In addition to more security properties, computation expensive pairing operations are eliminated to achieve less time usage for both sender and receiver, which is favourable property for IoT applications. In this paper, we showed a proof of security of our scheme, computational cost comparison and experimental performance evaluations. We implemented our proposed scheme on real embedded Android devices and confirmed that it achieves less time cost for both encryption and decryption comparing with the existing most efficient certificate-based multi-receiver encryption scheme and certificateless multi-receiver encryption scheme.
Now a day, need for fast accessing of data is increasing with the exponential increase in the security field. QR codes have served as a useful tool for fast and convenient sharing of data. But with increased usage of QR Codes have become vulnerable to attacks such as phishing, pharming, manipulation and exploitation. These security flaws could pose a danger to an average user. In this paper we have proposed a way, called Secured QR (SQR) to fix all these issues. In this approach we secure a QR code with the help of a key in generator side and the same key is used to get the original information at scanner side. We have used AES algorithm for this purpose. SQR approach is applicable when we want to share/use sensitive information in the organization such as sharing of profile details, exchange of payment information, business cards, generation of electronic tickets etc.
DNA cryptography is one of the promising fields in cryptographic research which emerged with the evolution of DNA computing. In this era, end to end transmission of secure data by ensuring confidentiality and authenticity over the networks is a real challenge. Even though various DNA based cryptographic algorithms exists, they are not secure enough to provide better security as required with today's security requirements. Hence we propose a cryptographic model which will enhance the message security. A new method of round key selection is used, which provides better and enhanced security against intruder's attack. The crucial attraction of this proposed model is providing multi level security of 3 levels with round key selection and message encryption in level 1, 16×16 matrix manipulation using asymmetric key encryption in level 2 and shift operations in level 3. Thus we design a system with multi level encryption without compromising complexity and size of the cipher text.
Devices in the internet of things (IoT) are frequently (i) resource-constrained, and (ii) deployed in unmonitored, physically unsecured environments. Securing these devices requires tractable cryptographic protocols, as well as cost effective tamper resistance solutions. We propose and evaluate cryptographic protocols that leverage physical unclonable functions (PUFs): circuits whose input to output mapping depends on the unique characteristics of the physical hardware on which it is executed. PUF-based protocols have the benefit of minimizing private key exposure, as well as providing cost-effective tamper resistance. We present and experimentally evaluate an elliptic curve based variant of a theoretical PUF-based authentication protocol proposed previously in the literature. Our work improves over an existing proof-of-concept implementation, which relied on the discrete logarithm problem as proposed in the original work. In contrast, our construction uses elliptic curve cryptography, which substantially reduces the computational and storage burden on the device. We describe PUF-based algorithms for device enrollment, authentication, decryption, and digital signature generation. The performance of each construction is experimentally evaluated on a resource-constrained device to demonstrate tractability in the IoT domain. We demonstrate that our implementation achieves practical performance results, while also providing realistic security. Our work demonstrates that PUF-based protocols may be practically and securely deployed on low-cost resource-constrained IoT devices.
In order to provide secure data communication in present cyber space world, a stronger encryption technique becomes a necessity that can help people to protect their sensitive information from cryptanalyst. This paper proposes a novel symmetric block cipher algorithm that uses multiple access circular queues (MACQs) of variable lengths for diffusion of information to a greater extent. The keys are randomly generated and will be of variable lengths depending upon the size of each MACQ.A number of iterations of circular rotations, swapping of elements and XORing the key with queue elements are performed on each MACQ. S-box is used so that the relationship between the key and the cipher text remains indeterminate or obscure. These operations together will help in transforming the cipher into a much more complex and secure block cipher. This paper attempt to propose an encryption algorithm that is secure and fast.
GSM network is the most widely used communication network for mobile phones in the World. However the security of the voice communication is the main issue in the GSM network. This paper proposes the technique for secure end to end communication over GSM network. The voice signal is encrypted at real time using digital techniques and transmitted over the GSM network. At receiver end the same decoding algorithm is used to extract the original speech signal. The speech trans-coding process of the GSM, severely distort an encrypted signal that does not possess the characteristics of speech signal. Therefore, it is not possible to use standard modem techniques over the GSM speech channel. The user may choose an appropriate algorithm and hardware platform as per requirement.
The transmission of data over a common transmission media revolute the world of information sharing from personal desktop to cloud computing. But the risk of the information theft has increased in the same ratio by the third party working on the same channel. The risk can be avoided using the suitable encryption algorithm. Using the best suited algorithm the transmitted data will be encrypted before placing it on the common channel. Using the public key or the private key the encrypted data can be decrypted by the authenticated user. It will avoid the risk of information theft by the unauthenticated user. In this work we have proposed an encryption algorithm which uses the ASCII code to encrypt the plain text. The common key will be used by sender or receiver to encrypt and decrypt the text for secure communication.
Selective encryption designates a technique that aims at scrambling a message content while preserving its syntax. Such an approach allows encryption to be transparent towards middle-box and/or end user devices, and to easily fit within existing pipelines. In this paper, we propose to apply this property to a real-time diffusion scenario - or broadcast - over a RTP session. The main challenge of such problematic is the preservation of the synchronization between encryption and decryption. Our solution is based on the Advanced Encryption Standard in counter mode which has been modified to fit our auto-synchronization requirement. Setting up the proposed synchronization scheme does not induce any latency, and requires no additional bandwidth in the RTP session (no additional information is sent). Moreover, its parallel structure allows to start decryption on any given frame of the video while leaving a lot of room for further optimization purposes.
We propose an optical security method for object authentication using photon-counting encryption implemented with phase encoded QR codes. By combining the full phase double-random-phase encryption with photon-counting imaging method and applying an iterative Huffman coding technique, we are able to encrypt and compress an image containing primary information about the object. This data can then be stored inside of an optically phase encoded QR code for robust read out, decryption, and authentication. The optically encoded QR code is verified by examining the speckle signature of the optical masks using statistical analysis. Optical experimental results are presented to demonstrate the performance of the system. In addition, experiments with a commercial Smartphone to read the optically encoded QR code are presented. To the best of our knowledge, this is the first report on integrating photon-counting security with optically phase encoded QR codes.
- « first
- ‹ previous
- 1
- 2
- 3