Visible to the public Biblio

Found 1106 results

Filters: Keyword is Encryption  [Clear All Filters]
2021-07-27
Zhang, Wei, Zhang, ZhiShuo, Wu, Yi.  2020.  Multi-Authority Attribute Based Encryption With Policy-hidden and Accountability. 2020 International Conference on Space-Air-Ground Computing (SAGC). :95—96.
In this paper, an attribute-based encryption scheme with policy hidden and key tracing under multi-authority is proposed. In our scheme, the access structure is embedded into the ciphertext implicitly and the attacker cannot gain user's private information by access structure. The key traceability is realized under multi-authority and collusion is prevented. Finally, based on the DBDH security model, it is proved that this scheme can resist the plaintext attack under the standard model.
Yin, Changchun, Wang, Hao, Zhou, Lu, Fang, Liming.  2020.  Ciphertext-Policy Attribute-Based Encryption with Multi-keyword Search over Medical Cloud Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :277—284.
Over the years, public health has faced a large number of challenges like COVID-19. Medical cloud computing is a promising method since it can make healthcare costs lower. The computation of health data is outsourced to the cloud server. If the encrypted medical data is not decrypted, it is difficult to search for those data. Many researchers have worked on searchable encryption schemes that allow executing searches on encrypted data. However, many existing works support single-keyword search. In this article, we propose a patient-centered fine-grained attribute-based encryption scheme with multi-keyword search (CP-ABEMKS) for medical cloud computing. First, we leverage the ciphertext-policy attribute-based technique to construct trapdoors. Then, we give a security analysis. Besides, we provide a performance evaluation, and the experiments demonstrate the efficiency and practicality of the proposed CP-ABEMKS.
2021-07-08
Obaidat, Muath, Brown, Joseph.  2020.  Two Factor Hash Verification (TFHV): A Novel Paradigm for Remote Authentication. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.
Current paradigms for client-server authentication often rely on username/password schemes. Studies show such schemes are increasingly vulnerable to heuristic and brute-force attacks. This is either due to poor practices by users such as insecure weak passwords, or insecure systems by server operators. A recurring problem in any system which retains information is insecure management policies for sensitive information, such as logins and passwords, by both hosts and users. Increased processing power on the horizon also threatens the security of many popular hashing algorithms. Furthermore, increasing reliance on applications that exchange sensitive information has resulted in increased urgency. This is demonstrated by a large number of mobile applications being deemed insecure by Open Web Application Security Project (OWASP) standards. This paper proposes a secure alternative technique of authentication that retains the current ecosystem, while minimizes attack vectors without inflating responsibilities on users or server operators. Our proposed authentication scheme uses layered encryption techniques alongside a two-part verification process. In addition, it provides dynamic protection for preventing against common cyber-attacks such as replay and man-in-the-middle attacks. Results show that our proposed authentication mechanism outperform other schemes in terms of deployability and resilience to cyber-attacks, without inflating transaction's speed.
Alamsyah, Zaenal, Mantoro, Teddy, Adityawarman, Umar, Ayu, Media Anugerah.  2020.  Combination RSA with One Time Pad for Enhanced Scheme of Two-Factor Authentication. 2020 6th International Conference on Computing Engineering and Design (ICCED). :1—5.
RSA is a popular asymmetric key algorithm with two keys scheme, a public key for encryption and private key for decryption. RSA has weaknesses in encryption and decryption of data, including slow in the process of encryption and decryption because it uses a lot of number generation. The reason is RSA algorithm can work well and is resistant to attacks such as brute force and statistical attacks. in this paper, it aims to strengthen the scheme by combining RSA with the One Time Pad algorithm so that it will bring up a new design to be used to enhance security on two-factor authentication. Contribution in this paper is to find a new scheme algorithm for an enhanced scheme of RSA. One Time Pad and RSA can combine as well.
Chaturvedi, Amit Kumar, Chahar, Meetendra Singh, Sharma, Kalpana.  2020.  Proposing Innovative Perturbation Algorithm for Securing Portable Data on Cloud Servers. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :360—364.
Cloud computing provides an open architecture and resource sharing computing platform with pay-per-use model. It is now a popular computing platform and most of the new internet based computing services are on this innovation supported environment. We consider it as innovation supported because developers are more focused here on the service design, rather on arranging the infrastructure, network, management of the resources, etc. These all things are available in cloud computing on hired basis. Now, a big question arises here is the security of data or privacy of data because the service provider is already using the infrastructure, network, storage, processors, and other more resources from the third party. So, the security or privacy of the portable user's data is the main motivation for writing this research paper. In this paper, we are proposing an innovative perturbation algorithm MAP() to secure the portable user's data on the cloud server.
Rao, Liting, Xie, Qingqing, Zhao, Hui.  2020.  Data Sharing for Multiple Groups with Privacy Preservation in the Cloud. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.
With almost unlimited storage capacity and low maintenance cost, cloud storage becomes a convenient and efficient way for data sharing among cloud users. However, this introduces the challenges of access control and privacy protection when data sharing for multiple groups, as each group usually has its own encryption and access control mechanism to protect data confidentiality. In this paper, we propose a multiple-group data sharing scheme with privacy preservation in the cloud. This scheme constructs a flexible access control framework by using group signature, ciphertext-policy attribute-based encryption and broadcast encryption, which supports both intra-group and cross-group data sharing with anonymous access. Furthermore, our scheme supports efficient user revocation. The security and efficiency of the scheme are proved thorough analysis and experiments.
Ilokah, Munachiso, Eklund, J. Mikael.  2020.  A Secure Privacy Preserving Cloud-based Framework for Sharing Electronic Health Data*. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). :5592—5597.
There exists a need for sharing user health data, especially with institutes for research purposes, in a secure fashion. This is especially true in the case of a system that includes a third party storage service, such as cloud computing, which limits the control of the data owner. The use of encryption for secure data storage continues to evolve to meet the need for flexible and fine-grained access control. This evolution has led to the development of Attribute Based Encryption (ABE). The use of ABE to ensure the security and privacy of health data has been explored. This paper presents an ABE based framework which allows for the secure outsourcing of the more computationally intensive processes for data decryption to the cloud servers. This reduces the time needed for decryption to occur at the user end and reduces the amount of computational power needed by users to access data.
Nooh, Sameer A..  2020.  Cloud Cryptography: User End Encryption. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.
Cloud computing has made the life of individual users and work of business corporations so much easier by providing them data storage services at very low costs. Individual users can store and access their data through shared cloud storage service anywhere anytime. Similarly, business corporation consumers of cloud computing can store, manage, process and access their big data with quite an ease. However, the security and privacy of users' data remains vulnerable in cloud computing Availability, integrity and confidentiality are the three primary elements that users consider before signing up for cloud computing services. Many public and private cloud services have experienced security breaches and unauthorized access incidents. This paper suggests user end cryptography of data before uploading it to a cloud storage service platform like Google Drive, Microsoft, Amazon and CloudSim etc. The proposed cryptography algorithm is based on symmetric key cryptography model and has been implemented on Amazon S3 cloud space service.
Kanchanadevi, P., Raja, Laxmi, Selvapandian, D., Dhanapal, R..  2020.  An Attribute Based Encryption Scheme with Dynamic Attributes Supporting in the Hybrid Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :271—273.
Cloud computing is the flexible platform to outsource the data from local server to commercial cloud. However cloud provides tremendous benefits to user, data privacy and data leakage reduce the attention of cloud. For protecting data privacy and reduce data leakage various techniques has to be implemented in cloud. There are various types of cloud environment, but we concentrate on Hybrid cloud. Hybrid cloud is nothing but combination of more than two or more cloud. Where critical operations are performed in private cloud and non critical operations are performed in public cloud. So, it has numerous advantages and criticality too. In this paper, we focus on data security through encryption scheme over Hybrid Cloud. There are various encryption schemes are close to us but it also have data security issues. To overcome these issues, Attribute Based Encryption Scheme with Dynamic Attributes Supporting (ABE-DAS) has proposed. Attribute based Encryption Scheme with Dynamic Attributes Supporting technique enhance the security of the data in hybrid cloud.
Li, Yan.  2020.  User Privacy Protection Technology of Tennis Match Live Broadcast from Media Cloud Platform Based on AES Encryption Algorithm. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :267—269.
With the improvement of the current Internet software and hardware performance, cloud storage has become one of the most widely used applications. This paper proposes a user privacy protection algorithm suitable for tennis match live broadcast from media cloud platform. Through theoretical and experimental verification, this algorithm can better protect the privacy of users in the live cloud platform. This algorithm is a ciphertext calculation algorithm based on data blocking. Firstly, plaintext data are grouped, then AES ciphertext calculation is performed on each group of plaintext data simultaneously and respectively, and finally ciphertext data after grouping encryption is spliced to obtain final ciphertext data. Experimental results show that the algorithm has the characteristics of large key space, high execution efficiency, ciphertext statistics and good key sensitivity.
2021-07-07
Jose, Sanjana Elsa, Nayana, P V, Nair, Nima S.  2020.  The Enforcement of Context Aware System Security Protocols with the Aid of Multi Factor Authentication. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :740–744.
In this paper, an attempt has been made to describe Kerberos authentication with multi factor authentication in context aware systems. Multi factor authentication will make the framework increasingly secure and dependable. The Kerberos convention is one of the most generally utilized security conventions on the planet. The security conventions of Kerberos have been around for a considerable length of time for programmers and other malware to Figure out how to sidestep it. This has required a quick support of the Kerberos convention to make it progressively dependable and productive. Right now, endeavor to help explain this by strengthening Kerberos with the assistance of multifaceted verification.
Hussain, Rashid.  2020.  Peripheral View of IoT based Miniature Devices Security Paradigm. 2020 Global Conference on Wireless and Optical Technologies (GCWOT). :1–7.
Tunnel approach to the security and privacy aspects of communication networks has been an issue since the inception of networking technologies. Neither the technology nor the regulatory and legal frame works proactively play a significant role towards addressing the ever escalating security challenges. As we have move to ubiquitous computing paradigm where information secrecy and privacy is coupled with new challenges of human to machine and machine to machine interfaces, a transformational model for security should be visited. This research is attempted to highlight the peripheral view of IoT based miniature device security paradigm with focus on standardization, regulations, user adaptation, software and applications, low computing resources and power consumption, human to machine interface and privacy.
Behrens, Hans Walter, Candan, K. Selçuk.  2020.  Practical Security for Cooperative Ad Hoc Systems. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–2.
Existing consumer devices represent the most pervasive computational platform available, but their inherently decentralized nature poses significant challenges for distributed computing adoption. In particular, device owners must willingly cooperate in collective deployments even while others may intentionally work to maliciously disrupt that cooperation. Public, cooperative systems benefit from low barriers to entry improving scalability and adoption, but simultaneously increase risk exposure to adversarial threats via promiscuous participant adoption. In this work, I aim to facilitate widespread adoption of cooperative systems by discussing the unique security and operational challenges of these systems, and highlighting several novel approaches that mitigate these disadvantages.
2021-06-30
Xu, Yue, Ni, Ming, Ying, Fei, Zhang, Jingwen.  2020.  Security Optimization Based on Mimic Common Operating Environment for the Internet of Vehicles. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :18—23.
The increasing vehicles have brought convenience to people as well as many traffic problems. The Internet of Vehicles (IoV) is an extension of the intelligent transportation system based on the Internet of Things (IoT), which is the omnibearing network connection among “Vehicles, Loads, Clouds”. However, IoV also faces threats from various known and unknown security vulnerabilities. Traditional security defense methods can only deal with known attacks, while there is no effective way to deal with unknown attacks. In this paper, we show an IoV system deployed on a Mimic Common Operating Environment (MCOE). At the sensing layer, we introduce a lightweight cryptographic algorithm, LBlock, to encrypt the data collected by the hardware. Thus, we can prevent malicious tampering of information such as vehicle conditions. At the application layer, we firstly put the IoV system platform into MCOE to make it dynamic, heterogeneous and redundant. Extensive experiments prove that the sensing layer can encrypt data reliably and energy-efficiently. And we prove the feasibility and security of the Internet of Vehicles system platform on MCOE.
2021-06-02
Priyanka, J., Rajeshwari, K.Raja, Ramakrishnan, M..  2020.  Operative Access Regulator for Attribute Based Generalized Signcryption Using Rough Set Theory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :458—460.
The personal health record has been shared and preserved easily with cloud core storage. Privacy and security have been one of the main demerits of core CloudHealthData storage. By increasing the security concerns in this paper experimented Operative Access Regulator for Attribute Based Generalized Signcryption Using rough set theory. By using rough set theory, the classifications of the attribute have been improved as well as the compulsory attribute has been formatted for decrypting process by using reduct and core. The Generalized signcryption defined priority wise access to diminish the cost and rise the effectiveness of the proposed model. The PHR has been stored under the access priorities of Signature only, encryption only and signcryption only mode. The proposed ABGS performance fulfills the secrecy, authentication and also other security principles.
2021-06-01
Chandrasekaran, Selvamani, Ramachandran, K.I., Adarsh, S., Puranik, Ashish Kumar.  2020.  Avoidance of Replay attack in CAN protocol using Authenticated Encryption. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Controller Area Network is the prominent communication protocol in automotive systems. Its salient features of arbitration, message filtering, error detection, data consistency and fault confinement provide robust and reliable architecture. Despite of this, it lacks security features and is vulnerable to many attacks. One of the common attacks over the CAN communication is the replay attack. It can happen even after the implementation of encryption or authentication. This paper proposes a methodology of supressing the replay attacks by implementing authenticated encryption embedded with timestamp and pre-shared initialisation vector as a primary key. The major advantage of this system is its flexibility and configurability nature where in each layer can be chosen with the help of cryptographic algorithms to up to the entire size of the keys.
Englund, Håkan, Lindskog, Niklas.  2020.  Secure acceleration on cloud-based FPGAs – FPGA enclaves. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :119—122.

FPGAs are becoming a common sight in cloud environments and new usage paradigms, such as FPGA-as-a-Service, have emerged. This development poses a challenge to traditional FPGA security models, as these are assuming trust between the user and the hardware owner. Currently, the user cannot keep bitstream nor data protected from the hardware owner in an FPGA-as-a-service setting. This paper proposes a security model where the chip manufacturer takes the role of root-of-trust to remedy these security problems. We suggest that the chip manufacturer creates a Public Key Infrastructure (PKI), used for user bitstream protection and data encryption, on each device. The chip manufacturer, rather than the hardware owner, also controls certain security-related peripherals. This allows the user to take control over a predefined part of the programmable logic and set up a protected enclave area. Hence, all user data can be provided in encrypted form and only be revealed inside the enclave area. In addition, our model enables secure and concurrent multi-tenant usage of remote FPGAs. To also consider the needs of the hardware owner, our solution includes bitstream certification and affirming that uploaded bitstreams have been vetted against maliciousness.

2021-05-26
Yang, Wenti, Wang, Ruimiao, Guan, Zhitao, Wu, Longfei, Du, Xiaojiang, Guizani, Mohsen.  2020.  A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.

The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.

Wah Myint, Phyo Wah, Hlaing, Swe Zin, Htoon, Ei Chaw.  2020.  EAC: Encryption Access Control Scheme for Policy Revocation in Cloud Data. 2020 International Conference on Advanced Information Technologies (ICAIT). :182—187.

Since a lot of information is outsourcing into cloud servers, data confidentiality becomes a higher risk to service providers. To assure data security, Ciphertext Policy Attributes-Based Encryption (CP-ABE) is observed for the cloud environment. Because ciphertexts and secret keys are relying on attributes, the revocation issue becomes a challenge for CP-ABE. This paper proposes an encryption access control (EAC) scheme to fulfill policy revocation which covers both attribute and user revocation. When one of the attributes in an access policy is changed by the data owner, the authorized users should be updated immediately because the revoked users who have gained previous access policy can observe the ciphertext. Especially for data owners, four types of updating policy levels are predefined. By classifying those levels, each secret token key is distinctly generated for each level. Consequently, a new secret key is produced by hashing the secret token key. This paper analyzes the execution times of key generation, encryption, and decryption times between non-revocation and policy revocation cases. Performance analysis for policy revocation is also presented in this paper.

2021-05-25
Fauser, Moritz, Zhang, Ping.  2020.  Resilience of Cyber-Physical Systems to Covert Attacks by Exploiting an Improved Encryption Scheme. 2020 59th IEEE Conference on Decision and Control (CDC). :5489—5494.
In recent years, the integration of encryption schemes into cyber-physical systems (CPS) has attracted much attention to improve the confidentiality of sensor signals and control input signals sent over the network. However, in principle an adversary can still modify the sensor signals and the control input signals, even though he does not know the concrete values of the signals. In this paper, we shall first show that a standard encryption scheme can not prevent some sophisticated attacks such as covert attacks, which remain invisible in the CPS with encrypted communication and a conventional diagnosis system. To cope with this problem, an improved encryption scheme is proposed to mask the communication and to cancel the influence of the attack signal out of the system. The basic idea is to swap the plaintext and the generated random value in the somewhat homomorphic encryption scheme to prevent a direct access of the adversary to the transmitted plaintext. It will be shown that the CPS with the improved encryption scheme is resilient to covert attacks. The proposed encryption scheme and the CPS structure are finally illustrated through the well-established quadruple-tank process.
Bakhtiyor, Abdurakhimov, Zarif, Khudoykulov, Orif, Allanov, Ilkhom, Boykuziev.  2020.  Algebraic Cryptanalysis of O'zDSt 1105:2009 Encryption Algorithm. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—7.
In this paper, we examine algebraic attacks on the O'zDSt 1105:2009. We begin with a brief review of the meaning of algebraic cryptanalysis, followed by an algebraic cryptanalysis of O'zDSt 1105:2009. Primarily O'zDSt 1105:2009 encryption algorithm is decomposed and each transformation in it is algebraic described separately. Then input and output of each transformation are expressed with other transformation, encryption key, plaintext and cipher text. Created equations, unknowns on it and degree of unknowns are analyzed, and then overall result is given. Based on experimental results, it is impossible to save all system of equations that describes all transformations in O'zDSt 1105:2009 standard. Because, this task requires 273 bytes for the second round. For this reason, it is advisable to evaluate the parameters of the system of algebraic equations, representing the O'zDSt 1105:2009 standard, theoretically.
Ahmedova, Oydin, Mardiyev, Ulugbek, Tursunov, Otabek.  2020.  Generation and Distribution Secret Encryption Keys with Parameter. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This article describes a new way to generate and distribute secret encryption keys, in which the processes of generating a public key and formicating a secret encryption key are performed in algebra with a parameter, the secrecy of which provides increased durability of the key.
Pradhan, Ankit, R., Punith., Sethi, Kamalakanta, Bera, Padmalochan.  2020.  Smart Grid Data Security using Practical CP-ABE with Obfuscated Policy and Outsourcing Decryption. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
Smart grid consists of multiple different entities related to various energy management systems which share fine-grained energy measurements among themselves in an optimal and reliable manner. Such delivery is achieved through intelligent transmission and distribution networks composed of various stakeholders like Phasor Measurement Units (PMUs), Master and Remote Terminal Units (MTU and RTU), Storage Centers and users in power utility departments subject to volatile changes in requirements. Hence, secure accessibility of data becomes vital in the context of efficient functioning of the smart grid. In this paper, we propose a practical attribute-based encryption scheme for securing data sharing and data access in Smart Grid architectures with the added advantage of obfuscating the access policy. This is aimed at preserving data privacy in the context of competing smart grid operators. We build our scheme on Linear Secret Sharing (LSS) Schemes for supporting any monotone access structures and thus enhancing the expressiveness of access policies. Lastly, we analyze the security, access policy privacy and collusion resistance properties of our cryptosystem and provide an efficiency comparison as well as experimental analysis using the Charm-Crypto framework to validate the proficiency of our proposed solution.
Fang, Ying, Gu, Tianlong, Chang, Liang, Li, Long.  2020.  Algebraic Decision Diagram-Based CP-ABE with Constant Secret and Fast Decryption. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :98–106.
Ciphertext-policy attribute-based encryption (CP-ABE) is applied to many data service platforms to provides secure and fine-grained access control. In this paper, a new CP-ABE system based on the algebraic decision diagram (ADD) is presented. The new system makes full use of both the powerful description ability and the high calculating efficiency of ADD to improves the performance and efficiency of algorithms contained in CP-ABE. First, the new system supports both positive and negative attributes in the description of access polices. Second, the size of the secret key is constant and is not affected by the number of attributes. Third, time complexity of the key generation and decryption algorithms are O(1). Finally, this scheme allows visitors to have different access permissions to access shared data or file. At the same time, PV operation is introduced into CP-ABE framework for the first time to prevent resource conflicts caused by read and write operations on shared files. Compared with other schemes, the new scheme proposed in this paper performs better in function and efficiency.
Taha, Mohammad Bany, Chowdhury, Rasel.  2020.  GALB: Load Balancing Algorithm for CP-ABE Encryption Tasks in E-Health Environment. 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :165–170.
Security of personal data in the e-healthcare has always been challenging issue. The embedded and wearable devices used to collect these personal and critical data of the patients and users are sensitive in nature. Attribute-Based Encryption is believed to provide access control along with data security for distributed data among multiple parties. These resources limited devices do have the capabilities to secure the data while sending to the cloud but instead it increases the overhead and latency of running the encryption algorithm. On the top of if confidentiality is required, which will add more latency. In order to reduce latency and overhead, we propose a new load balancing algorithm that will distribute the data to nearby devices with available resources to encrypt the data and send it to the cloud. In this article, we are proposing a load balancing algorithm for E-Health system called (GALB). Our algorithm is based on Genetic Algorithm (GA). Our algorithm (GALB) distribute the tasks that received to the main gateway between the devices on E-health environment. The distribution strategy is based on the available resources in the devices, the distance between the gateway and the those devices, and the complexity of the task (size) and CP-ABE encryption policy length. In order to evaluate our algorithm performance, we compare the near optimal solution proposed by GALB with the optimal solution proposed by LP.