Visible to the public Biblio

Found 1106 results

Filters: Keyword is Encryption  [Clear All Filters]
2017-03-27
Buzdalov, Maxim.  2016.  An Algorithm for Computing Lower Bounds for Unrestricted Black-Box Complexities. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :147–148.

Finding and proving lower bounds on black-box complexities is one of the hardest problems in theory of randomized search heuristics. Until recently, there were no general ways of doing this, except for information theoretic arguments similar to the one of Droste, Jansen and Wegener. In a recent paper by Buzdalov, Kever and Doerr, a theorem is proven which may yield tighter bounds on unrestricted black-box complexity using certain problem-specific information. To use this theorem, one should split the search process into a finite number of states, describe transitions between states, and for each state specify (and prove) the maximum number of different answers to any query. We augment these state constraints by one more kind of constraints on states, namely, the maximum number of different currently possible optima. An algorithm is presented for computing the lower bounds based on these constraints. We also empirically show improved lower bounds on black-box complexity of OneMax and Mastermind.

2017-03-20
Hahn, Florian, Kerschbaum, Florian.  2016.  Poly-Logarithmic Range Queries on Encrypted Data with Small Leakage. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :23–34.

Privacy-preserving range queries allow encrypting data while still enabling queries on ciphertexts if their corresponding plaintexts fall within a requested range. This provides a data owner the possibility to outsource data collections to a cloud service provider without sacrificing privacy nor losing functionality of filtering this data. However, existing methods for range queries either leak additional information (like the ordering of the complete data set) or slow down the search process tremendously by requiring to query each ciphertext in the data collection. We present a novel scheme that only leaks the access pattern while supporting amortized poly-logarithmic search time. Our construction is based on the novel idea of enabling the cloud service provider to compare requested range queries. By doing so, the cloud service provider can use the access pattern to speed-up search time for range queries in the future. On the one hand, values that have fallen within a queried range, are stored in an interactively built index for future requests. On the other hand, values that have not been queried do not leak any information to the cloud service provider and stay perfectly secure. In order to show its practicability we have implemented our scheme and give a detailed runtime evaluation.

Karbab, ElMouatez Billah, Debbabi, Mourad, Derhab, Abdelouahid, Mouheb, Djedjiga.  2016.  Cypider: Building Community-based Cyber-defense Infrastructure for Android Malware Detection. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :348–362.

The popularity of Android OS has dramatically increased malware apps targeting this mobile OS. The daily amount of malware has overwhelmed the detection process. This fact has motivated the need for developing malware detection and family attribution solutions with the least manual intervention. In response, we propose Cypider framework, a set of techniques and tools aiming to perform a systematic detection of mobile malware by building an efficient and scalable similarity network infrastructure of malicious apps. Our detection method is based on a novel concept, namely malicious community, in which we consider, for a given family, the instances that share common features. Under this concept, we assume that multiple similar Android apps with different authors are most likely to be malicious. Cypider leverages this assumption for the detection of variants of known malware families and zero-day malware. It is important to mention that Cypider does not rely on signature-based or learning-based patterns. Alternatively, it applies community detection algorithms on the similarity network, which extracts sub-graphs considered as suspicious and most likely malicious communities. Furthermore, we propose a novel fingerprinting technique, namely community fingerprint, based on a learning model for each malicious community. Cypider shows excellent results by detecting about 50% of the malware dataset in one detection iteration. Besides, the preliminary results of the community fingerprint are promising as we achieved 87% of the detection.

Chakraborty, Supriyo, Tripp, Omer.  2016.  Eavesdropping and Obfuscation Techniques for Smartphones. Proceedings of the International Conference on Mobile Software Engineering and Systems. :291–292.

Mobile apps often collect and share personal data with untrustworthy third-party apps, which may lead to data misuse and privacy violations. Most of the collected data originates from sensors built into the mobile device, where some of the sensors are treated as sensitive by the mobile platform while others permit unconditional access. Examples of privacy-prone sensors are the microphone, camera and GPS system. Access to these sensors is always mediated by protected function calls. On the other hand, the light sensor, accelerometer and gyroscope are considered innocuous. All apps have unrestricted access to their data. Unfortunately, this gap is not always justified. State-of-the-art privacy mechanisms on Android provide inadequate access control and do not address the vulnerabilities that arise due to unmediated access to so-called innocuous sensors on smartphones. We have developed techniques to demonstrate these threats. As part of our demonstration, we illustrate possible attacks using the innocuous sensors on the phone. As a solution, we present ipShield, a framework that provides users with greater control over their resources at runtime so as to protect against such attacks. We have implemented ipShield by modifying the AOSP.

Lara-Nino, Andres, Carlos, Miguel, Morales-Sandoval, Arturo, Diaz-Perez.  2016.  An evaluation of AES and present ciphers for lightweight cryptography on smartphones. :87–93.

In this work we present a study that evaluates and compares two block ciphers, AES and PRESENT, in the context of lightweight cryptography for smartphones security applications. To the best of our knowledge, this is the first comparison between these ciphers using a smartphone as computing platform. AES is the standard for symmetric encryption and PRESENT is one of the first ultra-lightweight ciphers proposed in the literature and included in the ISO/IEC 29192-2. In our study, we consider execution time, voltage consumption and memory usage as metrics for comparison purposes. The two block ciphers were evaluated through several experiments in a low-cost smartphone using Android built in tools. From the results we conclude that, for general purpose encryption AES performs statistically better although block-to-block PRESENT delivers better results.

Dormann, Will.  2016.  Google Authentication Risks on iOS. Proceedings of the 1st International Workshop on Mobile Development. :3–5.

The Google Identity Platform is a system that allows a user to sign in to applications and other services by using a Google account. Google Sign-In is one such method for providing one’s identity to the Google Identity Platform. Google Sign-In is available for Android applications and iOS applications, as well as for websites and other devices. Users of Google Sign-In find that it integrates well with the Android platform, but iOS users (iPhone, iPad, etc.) do not have the same experience. The user experience when logging in to a Google account on an iOS application can not only be more tedious than the Android experience, but it also conditions users to engage in behaviors that put the information in their Google accounts at risk.

Asharov, Gilad, Naor, Moni, Segev, Gil, Shahaf, Ido.  2016.  Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-dimensional Balanced Allocations. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :1101–1114.

Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted server while supporting keyword search in a secure manner. Despite the rapidly increasing interest in SSE technology, experiments indicate that the performance of the known schemes scales badly to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools, but rather due to their poor locality (where locality is defined as the number of non-contiguous memory locations the server accesses with each query). The only known schemes that do not suffer from poor locality suffer either from an impractical space overhead or from an impractical read efficiency (where read efficiency is defined as the ratio between the number of bits the server reads with each query and the actual size of the answer). We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space overhead, and nearly-optimal read efficiency. Specifically, for a database of size N, under the modest assumption that no keyword appears in more than N1 − 1/loglogN documents, we construct a scheme with read efficiency Õ(loglogN). This essentially matches the lower bound of Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in either its locality, its space overhead, or its read efficiency. In addition, even without making any assumptions on the structure of the database, we construct a scheme with read efficiency Õ(logN). Our schemes are obtained via a two-dimensional generalization of the classic balanced allocations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-dimensional balanced allocation schemes, and then combine their algorithmic structure with subtle cryptographic techniques.

Swami, Shivam, Rakshit, Joydeep, Mohanram, Kartik.  2016.  SECRET: Smartly EnCRypted Energy Efficient Non-volatile Memories. Proceedings of the 53rd Annual Design Automation Conference. :166:1–166:6.

Data persistence in emerging non-volatile memories (NVMs) poses a multitude of security vulnerabilities, motivating main memory encryption for data security. However, practical encryption algorithms demonstrate strong diffusion characteristics that increase cell flips, resulting in increased write energy/latency and reduced lifetime of NVMs. State-of-the-art security solutions have focused on reducing the encryption penalty (increased write energy/latency and reduced memory lifetime) in single-level cell (SLC) NVMs; however, the realization of low encryption penalty solutions for multi-/triple-level cell (MLC/TLC) secure NVMs remains an open area of research. This work synergistically integrates zero-based partial writes with XOR-based energy masking to realize Smartly EnCRypted Energy efficienT, i.e., SECRET MLC/TLC NVMs, without compromising the security of the underlying encryption technique. Our simulations on an MLC (TLC) resistive RAM (RRAM) architecture across SPEC CPU2006 workloads demonstrate that for 6.25% (7.84%) memory overhead, SECRET reduces write energy by 80% (63%), latency by 37% (49%), and improves memory lifetime by 63% (56%) over conventional advanced encryption standard-based (AES-based) counter mode encryption.

Pouliot, David, Wright, Charles V..  2016.  The Shadow Nemesis: Inference Attacks on Efficiently Deployable, Efficiently Searchable Encryption. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1341–1352.

Encrypting Internet communications has been the subject of renewed focus in recent years. In order to add end-to-end encryption to legacy applications without losing the convenience of full-text search, ShadowCrypt and Mimesis Aegis use a new cryptographic technique called "efficiently deployable efficiently searchable encryption" (EDESE) that allows a standard full-text search system to perform searches on encrypted data. Compared to other recent techniques for searching on encrypted data, EDESE schemes leak a great deal of statistical information about the encrypted messages and the keywords they contain. Until now, the practical impact of this leakage has been difficult to quantify. In this paper, we show that the adversary's task of matching plaintext keywords to the opaque cryptographic identifiers used in EDESE can be reduced to the well-known combinatorial optimization problem of weighted graph matching (WGM). Using real email and chat data, we show how off-the-shelf WGM solvers can be used to accurately and efficiently recover hundreds of the most common plaintext keywords from a set of EDESE-encrypted messages. We show how to recover the tags from Bloom filters so that the WGM solver can be used with the set of encrypted messages that utilizes a Bloom filter to encode its search tags. We also show that the attack can be mitigated by carefully configuring Bloom filter parameters.

Deshotels, Luke, Deaconescu, Razvan, Chiroiu, Mihai, Davi, Lucas, Enck, William, Sadeghi, Ahmad-Reza.  2016.  SandScout: Automatic Detection of Flaws in iOS Sandbox Profiles. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :704–716.

Recent literature on iOS security has focused on the malicious potential of third-party applications, demonstrating how developers can bypass application vetting and code-level protections. In addition to these protections, iOS uses a generic sandbox profile called "container" to confine malicious or exploited third-party applications. In this paper, we present the first systematic analysis of the iOS container sandbox profile. We propose the SandScout framework to extract, decompile, formally model, and analyze iOS sandbox profiles as logic-based programs. We use our Prolog-based queries to evaluate file-based security properties of the container sandbox profile for iOS 9.0.2 and discover seven classes of exploitable vulnerabilities. These attacks affect non-jailbroken devices running later versions of iOS. We are working with Apple to resolve these attacks, and we expect that SandScout will play a significant role in the development of sandbox profiles for future versions of iOS.

Bellare, Mihir, Hoang, Viet Tung, Tessaro, Stefano.  2016.  Message-Recovery Attacks on Feistel-Based Format Preserving Encryption. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :444–455.

We give attacks on Feistel-based format-preserving encryption (FPE) schemes that succeed in message recovery (not merely distinguishing scheme outputs from random) when the message space is small. For \$4\$-bit messages, the attacks fully recover the target message using \$2textasciicircum1 examples for the FF3 NIST standard and \$2textasciicircum5 examples for the FF1 NIST standard. The examples include only three messages per tweak, which is what makes the attacks non-trivial even though the total number of examples exceeds the size of the domain. The attacks are rigorously analyzed in a new definitional framework of message-recovery security. The attacks are easily put out of reach by increasing the number of Feistel rounds in the standards.

Jo, Je-Gyeong, Ryou, Jae-cheol.  2016.  HTML and PDF Fuzzing Methodology in iOS. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :8:1–8:5.

iOS is well-known operating system which is strong in security. However, many attacking methods of iOS have recently been published which are called "Masque Attack", "Null Dereference" and "Italy Hacking Team's RCS". Therefore, security and safety is not suitable word to iOS. In addition, many security researchers have a problem to analyze iOS because the iOS is difficult to debug because of closed source. So, we propose a new security testing method for iOS. At first, we perform to fuzz iOS's web browser called MobileSafari. The MobileSafari is possible to express HTML, PDF and mp4, etc. We perform test abnormal HTML and PDF using our fuzzing method. We hope that our research can be helpful to iOS's security and safety.

Orikogbo, Damilola, Büchler, Matthias, Egele, Manuel.  2016.  CRiOS: Toward Large-Scale iOS Application Analysis. Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices. :33–42.

Mobile applications - or apps - are one of the main reasons for the unprecedented success smart phones and tablets have experienced over the last decade. Apps are the main interfaces that users deal with when engaging in online banking, checking travel itineraries, or browsing their social network profiles while on the go. Previous research has studied various aspects of mobile application security including data leakage and privilege escalation through confused deputy attacks. However, the vast majority of mobile application research targets Google's Android platform. Few research papers analyze iOS applications and those that focus on the Apple environment perform their analysis on comparatively small datasets (i.e., thousands in iOS vs. hundreds of thousands in Android). As these smaller datasets call into question how representative the gained results are, we propose, implement, and evaluate CRiOS, a fully-automated system that allows us to amass comprehensive datasets of iOS applications which we subject to large-scale analysis. To advance academic research into the iOS platform and its apps, we plan on releasing CRiOS as an open source project. We also use CRiOS to aggregate a dataset of 43,404 iOS applications. Equipped with this dataset we analyze the collected apps to identify third-party libraries that are common among many applications. We also investigate the network communication endpoints referenced by the applications with respect to the endpoints' correct use of TLS/SSL certificates. In summary, we find that the average iOS application consists of 60.2% library classes and only 39.8% developer-authored content. Furthermore, we find that 9.32% of referenced network connection endpoints either entirely omit to cryptographically protect network communications or present untrustworthy SSL certificates.

Suarez, Drew, Mayer, Daniel.  2016.  Faux Disk Encryption: Realities of Secure Storage on Mobile Devices. Proceedings of the International Conference on Mobile Software Engineering and Systems. :283–284.

This paper reviews the challenges faced when securing data on mobile devices. After a discussion of the state-of-the-art of secure storage for iOS and Android, the paper introduces an attack which demonstrates how Full Disk Encryption (FDE) on Android can be ineffective in practice.

Qiu, Pengfei, Lyu, Yongqiang, Zhang, Jiliang, Wang, Xingwei, Zhai, Di, Wang, Dongsheng, Qu, Gang.  2016.  Physical Unclonable Functions-based Linear Encryption Against Code Reuse Attacks. Proceedings of the 53rd Annual Design Automation Conference. :75:1–75:6.

Recently, code reuse attacks (CRAs) have emerged as a new class of ingenious security threatens. Attackers can utilize CRAs to hijack the control flow of programs to perform malicious actions without injecting any codes. Existing defenses against CRAs often incur high memory and performance overheads or require extending the existing processors' instruction set architectures (ISAs). To tackle these issues, we propose a hardware-based control flow integrity (CFI) that employs physical unclonable functions (PUF)-based linear encryption architecture (LEA) to protect against CRAs with negligible hardware extending and run time overheads. The proposed method can protect ret and indirect jmp instructions from return oriented programming (ROP) and jump oriented programming (JOP) without any additional software manipulations and extending ISAs. The pre-process will be conducted on codes once the executable binary is loaded into memory, and the real-time control flow verification based on LEA can be done while ret and jmp instructions are executed. Performance evaluations on benchmarks show that the proposed method only introduces 0.61% run-time overhead and 0.63% memory overhead on average.

Dormann, Will.  2016.  Google Authentication Risks on iOS. Proceedings of the 1st International Workshop on Mobile Development. :3–5.

The Google Identity Platform is a system that allows a user to sign in to applications and other services by using a Google account. Google Sign-In is one such method for providing one’s identity to the Google Identity Platform. Google Sign-In is available for Android applications and iOS applications, as well as for websites and other devices. Users of Google Sign-In find that it integrates well with the Android platform, but iOS users (iPhone, iPad, etc.) do not have the same experience. The user experience when logging in to a Google account on an iOS application can not only be more tedious than the Android experience, but it also conditions users to engage in behaviors that put the information in their Google accounts at risk.

Asharov, Gilad, Naor, Moni, Segev, Gil, Shahaf, Ido.  2016.  Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-dimensional Balanced Allocations. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :1101–1114.

Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted server while supporting keyword search in a secure manner. Despite the rapidly increasing interest in SSE technology, experiments indicate that the performance of the known schemes scales badly to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools, but rather due to their poor locality (where locality is defined as the number of non-contiguous memory locations the server accesses with each query). The only known schemes that do not suffer from poor locality suffer either from an impractical space overhead or from an impractical read efficiency (where read efficiency is defined as the ratio between the number of bits the server reads with each query and the actual size of the answer). We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space overhead, and nearly-optimal read efficiency. Specifically, for a database of size N, under the modest assumption that no keyword appears in more than N1 − 1/loglogN documents, we construct a scheme with read efficiency Õ(loglogN). This essentially matches the lower bound of Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in either its locality, its space overhead, or its read efficiency. In addition, even without making any assumptions on the structure of the database, we construct a scheme with read efficiency Õ(logN). Our schemes are obtained via a two-dimensional generalization of the classic balanced allocations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-dimensional balanced allocation schemes, and then combine their algorithmic structure with subtle cryptographic techniques.

Swami, Shivam, Rakshit, Joydeep, Mohanram, Kartik.  2016.  SECRET: Smartly EnCRypted Energy Efficient Non-volatile Memories. Proceedings of the 53rd Annual Design Automation Conference. :166:1–166:6.

Data persistence in emerging non-volatile memories (NVMs) poses a multitude of security vulnerabilities, motivating main memory encryption for data security. However, practical encryption algorithms demonstrate strong diffusion characteristics that increase cell flips, resulting in increased write energy/latency and reduced lifetime of NVMs. State-of-the-art security solutions have focused on reducing the encryption penalty (increased write energy/latency and reduced memory lifetime) in single-level cell (SLC) NVMs; however, the realization of low encryption penalty solutions for multi-/triple-level cell (MLC/TLC) secure NVMs remains an open area of research. This work synergistically integrates zero-based partial writes with XOR-based energy masking to realize Smartly EnCRypted Energy efficienT, i.e., SECRET MLC/TLC NVMs, without compromising the security of the underlying encryption technique. Our simulations on an MLC (TLC) resistive RAM (RRAM) architecture across SPEC CPU2006 workloads demonstrate that for 6.25% (7.84%) memory overhead, SECRET reduces write energy by 80% (63%), latency by 37% (49%), and improves memory lifetime by 63% (56%) over conventional advanced encryption standard-based (AES-based) counter mode encryption.

Jo, Je-Gyeong, Ryou, Jae-cheol.  2016.  HTML and PDF Fuzzing Methodology in iOS. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :8:1–8:5.

iOS is well-known operating system which is strong in security. However, many attacking methods of iOS have recently been published which are called "Masque Attack", "Null Dereference" and "Italy Hacking Team's RCS". Therefore, security and safety is not suitable word to iOS. In addition, many security researchers have a problem to analyze iOS because the iOS is difficult to debug because of closed source. So, we propose a new security testing method for iOS. At first, we perform to fuzz iOS's web browser called MobileSafari. The MobileSafari is possible to express HTML, PDF and mp4, etc. We perform test abnormal HTML and PDF using our fuzzing method. We hope that our research can be helpful to iOS's security and safety.

Suarez, Drew, Mayer, Daniel.  2016.  Faux Disk Encryption: Realities of Secure Storage on Mobile Devices. Proceedings of the International Conference on Mobile Software Engineering and Systems. :283–284.

This paper reviews the challenges faced when securing data on mobile devices. After a discussion of the state-of-the-art of secure storage for iOS and Android, the paper introduces an attack which demonstrates how Full Disk Encryption (FDE) on Android can be ineffective in practice.

Krutz, Daniel E., Munaiah, Nuthan, Meneely, Andrew, Malachowsky, Samuel A..  2016.  Examining the Relationship Between Security Metrics and User Ratings of Mobile Apps: A Case Study. Proceedings of the International Workshop on App Market Analytics. :8–14.

The success or failure of a mobile application (`app') is largely determined by user ratings. Users frequently make their app choices based on the ratings of apps in comparison with similar, often competing apps. Users also expect apps to continually provide new features while maintaining quality, or the ratings drop. At the same time apps must also be secure, but is there a historical trade-off between security and ratings? Or are app store ratings a more all-encompassing measure of product maturity? We used static analysis tools to collect security-related metrics in 38,466 Android apps from the Google Play store. We compared the rate of an app's permission misuse, number of requested permissions, and Androrisk score, against its user rating. We found that high-rated apps have statistically significantly higher security risk metrics than low-rated apps. However, the correlations are weak. This result supports the conventional wisdom that users are not factoring security risks into their ratings in a meaningful way. This could be due to several reasons including users not placing much emphasis on security, or that the typical user is unable to gauge the security risk level of the apps they use everyday.

Atici, Mehmet Ali, Sagiroglu, Seref, Dogru, Ibrahim Alper.  2016.  Android malware analysis approach based on control flow graphs and machine learning algorithms. :26–31.

Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.

Im, Jong-Hyuk, Choi, JinChun, Nyang, DaeHun, Lee, Mun-Kyu.  2016.  Privacy-Preserving Palm Print Authentication Using Homomorphic Encryption. :878–881.

Biometric verification systems have security issues regarding the storage of biometric data in that a user's biometric features cannot be changed into other ones even when a system is compromised. To address this issue, it may be safe to store the biometrics data on a reliable remote server instead of storing them in a local device. However, this approach may raise a privacy issue. In this paper, we propose a biometric verification system where the biometric data are stored in a remote server in an encrypted form and the similarity of the user input to the registered biometric data is computed in an encrypted domain using a homomorphic encryption. We evaluated the performance of the proposed system through an implementation on an Android-based smartphone and an i7-based server.

Barbareschi, Mario, Cilardo, Alessandro, Mazzeo, Antonino.  2016.  Partial FPGA Bitstream Encryption Enabling Hardware DRM in Mobile Environments. Proceedings of the ACM International Conference on Computing Frontiers. :443–448.

The concept of digital right management (DRM) has become extremely important in current mobile environments. This paper shows how partial bitstream encryption can allow the secure distribution of hardware applications resembling the mechanisms of traditional software DRM. Building on the recent developments towards the secure distribution of hardware cores, the paper demonstrates a prototypical implementation of a user mobile device supporting such distribution mechanisms. The prototype extends the Android operating system with support for hardware reconfigurability and showcases the interplay of novel security concepts enabled by hardware DRM, the advantages of a design flow based on high-level synthesis, and the opportunities provided by current software-rich reconfigurable Systems-on-Chips. Relying on this prototype, we also collected extensive quantitative results demonstrating the limited overhead incurred by the secure distribution architecture.

2017-03-08
Konstantinou, C., Keliris, A., Maniatakos, M..  2015.  Privacy-preserving functional IP verification utilizing fully homomorphic encryption. 2015 Design, Automation Test in Europe Conference Exhibition (DATE). :333–338.

Intellectual Property (IP) verification is a crucial component of System-on-Chip (SoC) design in the modern IC design business model. Given a globalized supply chain and an increasing demand for IP reuse, IP theft has become a major concern for the IC industry. In this paper, we address the trust issues that arise between IP owners and IP users during the functional verification of an IP core. Our proposed scheme ensures the privacy of IP owners and users, by a) generating a privacy-preserving version of the IP, which is functionally equivalent to the original design, and b) employing homomorphically encrypted input vectors. This allows the functional verification to be securely outsourced to a third-party, or to be executed by either parties, while revealing the least possible information regarding the test vectors and the IP core. Experiments on both combinational and sequential benchmark circuits demonstrate up to three orders of magnitude IP verification slowdown, due to the computationally intensive fully homomorphic operations, for different security parameter sizes.