Biblio
Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.
Transportation costs for road transport companies may be intensified by rising fuel prices, levies, traffic congestion, etc. Of particular concern to the Mpact group of companies is the long waiting times in the queues at loading and offloading points at three processing mills in the KZN (KwaZulu-Natal) province in South Africa. Following a survey among the drivers who regularly deliver at these sites, recommendations for alleviating the lengthy waiting times are put forward. On the strength of one of these recommendations, namely the innovative use of ICTs, suggestions on how cloud-based technologies may be embraced by the company are explored. In the process, the value added by a cloud-based supply chain, enterprise systems, CRM (Customer Relationship Management) and knowledge management is examined.
This paper introduces a research agenda focusing on cybersecurity in the context of product lifecycle management. The paper discusses research directions on critical protection techniques, including protection techniques from insider threat, access control systems, secure supply chains and remote 3D printing, compliance techniques, and secure collaboration techniques. The paper then presents an overview of DBSAFE, a system for protecting data from insider threat.
A database is a vast collection of data which helps us to collect, retrieve, organize and manage the data in an efficient and effective manner. Databases are critical assets. They store client details, financial information, personal files, company secrets and other data necessary for business. Today people are depending more on the corporate data for decision making, management of customer service and supply chain management etc. Any loss, corrupted data or unavailability of data may seriously affect its performance. The database security should provide protected access to the contents of a database and should preserve the integrity, availability, consistency, and quality of the data This paper describes the architecture based on placing the Elliptical curve cryptography module inside database management software (DBMS), just above the database cache. Using this method only selected part of the database can be encrypted instead of the whole database. This architecture allows us to achieve very strong data security using ECC and increase performance using cache.
Once data is released to the Internet, there is little hope to successfully delete it, as it may have been duplicated, reposted, and archived in multiple places. This poses a significant threat to users' privacy and their right to permanently erase their very own data. One approach to control the implications on privacy is to assign a lifetime value to the published data and ensure that the data is no longer accessible after this point in time. However, such an approach suffers from the inability to successfully predict the right time when the data should vanish. Consequently, the author of the data can only estimate the correct time, which unfortunately can cause the premature or belated deletion of data. This paper tackles the problem of prefixed lifetimes in data deletion from a different angle and argues that alternative approaches are a desideratum for research. In our approach, we consider different criteria when data should be deleted, such as keeping data available as long as there is sufficient interest for it or untimely delete it in cases of excessive accesses. To assist the self-destruction of data, we propose a protocol and develop a prototype, called Neuralyzer, which leverages the caching mechanisms of the Domain Name System (DNS) to ensure the successful deletion of data. Our experimental results demonstrate that our approach can completely delete published data while at the same time achieving flexible expiration times varying from few days to several months depending on the users' interest.
Easy sharing files in public network that is intended only for certain people often resulting in the leaking of sharing folders or files and able to be read also by others who are not authorized. Secure data is one of the most challenging issues in data sharing systems. Here, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a reliable asymmetric encryption mechanism which deals with secure data and used for data encryption. It is not necessary encrypted to one particular user, but recipient is only able to decrypt if and only if the attribute set of his private key match with the specified policy in the ciphertext. In this paper, we propose a secure data exchange using CP-ABE with authentication feature. The data is attribute-based encrypted to satisfy confidentiality feature and authenticated to satisfy data authentication simultaneously.
Soft microprocessors are vital components of many embedded FPGA systems. As the application domain for FPGAs expands, the security of the software used by soft processors increases in importance. Although software confidentiality approaches (e.g. encryption) are effective, code obfuscation is known to be an effective enhancement that further deters code understanding for attackers. The availability of specialization in FPGAs provides a unique opportunity for code obfuscation on a per-application basis with minimal hardware overhead. In this paper we describe a new technique to obfuscate soft microprocessor code which is located outside the FPGA chip in an unprotected area. Our approach provides customizable, data-dependent control flow modification to make it difficult for attackers to easily understand program behavior. The application of the approach to three benchmarks illustrates a control flow cyclomatic complexity increase of about 7× with a modest logic overhead for the soft processor.
Now a day's cloud computing is power station to run multiple businesses. It is cumulating more and more users every day. Database-as-a-service is service model provided by cloud computing to store, manage and process data on a cloud platform. Database-as-a-service has key characteristics such as availability, scalability, elasticity. A customer does not have to worry about database installation and management. As a replacement, the cloud database service provider takes responsibility for installing and maintaining the database. The real problem occurs when it comes to storing confidential or private information in the cloud database, we cannot rely on the cloud data vendor. A curious cloud database vendor may capture and leak the secret information. For that purpose, Protected Database-as-a-service is a novel solution to this problem that provides provable and pragmatic privacy in the face of a compromised cloud database service provider. Protected Database-as-a-service defines various encryption schemes to choose encryption algorithm and encryption key to encrypt and decrypt data. It also provides "Master key" to users, so that a metadata storage table can be decrypted only by using the master key of the users. As a result, a cloud service vendor never gets access to decrypted data, and even if all servers are jeopardized, in such inauspicious circumstances a cloud service vendor will not be able to decrypt the data. Proposed Protected Database-as-a-service system allows multiple geographically distributed clients to execute concurrent and independent operation on encrypted data and also conserve data confidentiality and consistency at cloud level, to eradicate any intermediate server between the client and the cloud database.
Small embedded devices such as microcontrollers have been widely used for identification, authentication, securing and storing confidential information. In all these applications, the security and privacy of the microcontrollers are of crucial importance. To provide strong security to protect data, these devices depend on cryptographic algorithms to ensure confidentiality and integrity of data. Moreover, many algorithms have been proposed, with each one having its strength and weaknesses. This paper presents a Differential Power Analysis(DPA) attack on hardware implementations of Advanced Encryption Standard(AES) running inside a PIC18F2420 microcontroller.
Information Technology experts cite security and privacy concerns as the major challenges in the adoption of cloud computing. On Platform-as-a-Service (PaaS) clouds, customers are faced with challenges of selecting service providers and evaluating security implementations based on their security needs and requirements. This study aims to enable cloud customers the ability to quantify their security requirements in order to identify critical areas in PaaS cloud architectures were security provisions offered by CSPs could be assessed. With the use of an adaptive security mapping matrix, the study uses a quantitative approach to presents findings of numeric data that shows critical architectures within the PaaS environment where security can be evaluated and security controls assessed to meet these security requirements. The matrix can be adapted across different types of PaaS cloud models based on individual security requirements and service level objectives identified by PaaS cloud customers.
Searchable encryption is a new developing information security technique and it enables users to search over encrypted data through keywords without having to decrypt it at first. In the last decade, many researchers are engaging in the field of searchable encryption and have proposed a series of efficient search schemes over encrypted cloud data. It is the time to survey this field to conclude a comprehensive framework by analyzing individual contributions. This paper focuses on the searchable encryption schemes in cloud. We firstly summarize the general model and threat model in searchable encryption schemes, and then present the privacy-preserving issues in these schemes. In addition, we compare the efficiency and security between semantic search and preferred search in detail. At last, some open issues and research challenges in the future are proposed.
Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.
In the RFID technology, the privacy of low-cost tag is a hot issue in recent years. A new mutual authentication protocol is achieved with the time stamps, hash function and PRNG. This paper analyzes some common attack against RFID and the relevant solutions. We also make the security performance comparison with original security authentication protocol. This protocol can not only speed up the proof procedure but also save cost and it can prevent the RFID system from being attacked by replay, clone and DOS, etc..
To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.
Side Channel Attacks (SCA) using power measurements are a known method of breaking cryptographic algorithms such as AES. Published research into attacks on AES frequently target only AES-128, and often target only the core Electronic Code-Book (ECB) algorithm, without discussing surrounding issues such as triggering, along with breaking the initialization vector. This paper demonstrates a complete attack on a secure bootloader, where the firmware files have been encrypted with AES-256-CBC. A classic Correlation Power Analysis (CPA) attack is performed on AES-256 to recover the complete 32-byte key, and a CPA attack is also used to attempt recovery of the initialization vector (IV).
This paper is nominated for an image protection scheme in the area of government sectors based on discrete cosine transformation with digital watermarking scheme. A cover image has broken down into 8 × 8 non overlapped blocks and transformed from spatial domain into frequency domain. Apply DCT version II of the DCT family to each sub block of the original image. Then embed the watermarking image into the sub blocks. Apply IDCT of version II to send the image through communication channel with watermarked image. To recover the watermarked image, apply DCT and watermarking formula to the sub blocks. The experimental results show that the proposed watermarking procedure gives high security and watermarked image retrieved successfully.
The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.
This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.
We design polynomial time schemes for secure message transmission over arbitrary networks, in the presence of an eavesdropper, and where each edge corresponds to an erasure channel with public feedback. Our schemes are described through linear programming (LP) formulations, that explicitly select (possibly different) sets of paths for key-generation and message sending. Although our LPs are not always capacity-achieving, they outperform the best known alternatives in the literature, and extend to incorporate several interesting scenaria.
Data security has always been a major concern and a huge challenge for governments and individuals throughout the world since early times. Recent advances in technology, such as the introduction of cloud computing, make it even a bigger challenge to keep data secure. In parallel, high throughput mobile devices such as smartphones and tablets are designed to support these new technologies. The high throughput requires power-efficient designs to maintain the battery-life. In this paper, we propose a novel Joint Security and Advanced Low Density Parity Check (LDPC) Coding (JSALC) method. The JSALC is composed of two parts: the Joint Security and Advanced LDPC-based Encryption (JSALE) and the dual-step Secure LDPC code for Channel Coding (SLCC). The JSALE is obtained by interlacing Advanced Encryption System (AES)-like rounds and Quasi-Cyclic (QC)-LDPC rows into a single primitive. Both the JSALE code and the SLCC code share the same base quasi-cyclic parity check matrix (PCM) which retains the power efficiency compared to conventional systems. We show that the overall JSALC Frame-Error-Rate (FER) performance outperforms other cryptcoding methods by over 1.5 dB while maintaining the AES-128 security level. Moreover, the JSALC enables error resilience and has higher diffusion than AES-128.
Todays' era of internet-of-things, cloud computing and big data centers calls for more fresh graduates with expertise in digital data processing techniques such as compression, encryption and error correcting codes. This paper describes a project-based elective that covers these three main digital data processing techniques and can be offered to three different undergraduate majors electrical and computer engineering and computer science. The course has been offered successfully for three years. Registration statistics show equal interest from the three different majors. Assessment data show that students have successfully completed the different course outcomes. Students' feedback show that students appreciate the knowledge they attain from this elective and suggest that the workload for this course in relation to other courses of equal credit is as expected.
Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.
Security in mobile handsets of telecommunication standards such as GSM, Project 25 and TETRA is very important, especially when governments and military forces use handsets and telecommunication devices. Although telecommunication could be quite secure by using encryption, coding, tunneling and exclusive channel, attackers create new ways to bypass them without the knowledge of the legitimate user. In this paper we introduce a new, simple and economical circuit to warn the user in cases where the message is not encrypted because of manipulation by attackers or accidental damage. This circuit not only consumes very low power but also is created to sustain telecommunication devices in aspect of security and using friendly. Warning to user causes the best practices of telecommunication devices without wasting time and energy for fault detection.