Biblio
Internet of Things (IoT) is experiencing significant growth in the safety-critical applications which have caused new security challenges. These devices are becoming targets for different types of physical attacks, which are exacerbated by their diversity and accessibility. Therefore, there is a strict necessity to support embedded software developers to identify and remediate the vulnerabilities and create resilient applications against such attacks. In this paper, we propose a hardware security vulnerability assessment based on fault injection of an embedded application. In our security assessment, we apply a fault injection attack by using our clock glitch generator on a critical medical IoT device. Furthermore, we analyze the potential risks of ignoring these attacks in this embedded application. The results will inform the embedded software developers of various security risks and the required steps to improve the security of similar MCU-based applications. Our hardware security assessment approach is easy to apply and can lead to secure embedded IoT applications against fault attacks.
With the widespread application of distributed information processing, information processing security issues have become one of the important research topics; CAPTCHA technology is often used as the first security barrier for distributed information processing and it prevents the client malicious programs to attack the server. The experiment proves that the existing “request / response” mode of CAPTCHA has great security risks. “The text-based CAPTCHA solution without network flow consumption” proposed in this paper avoids the “request / response” mode and the verification logic of the text-based CAPTCHA is migrated to the client in this solution, which fundamentally cuts off the client's attack facing to the server during the verification of the CAPTCHA and it is a high-security text-based CAPTCHA solution without network flow consumption.
Reliability analysis of concurrent data based on Botnet modeling is conducted in this paper. At present, the detection methods for botnets are mainly focused on two aspects. The first type requires the monitoring of high-privilege systems, which will bring certain security risks to the terminal. The second type is to identify botnets by identifying spam or spam, which is not targeted. By introducing multi-dimensional permutation entropy, the impact of permutation entropy on the permutation entropy is calculated based on the data communicated between zombies, describing the complexity of the network traffic time series, and the clustering variance method can effectively solve the difficulty of the detection. This paper is organized based on the data complex structure analysis. The experimental results show acceptable performance.
There has been growing concern about privacy and security risks towards electronic-government (e-government) services adoption. Though there are positive results of e- government, there are still other contestable challenges that hamper success of e-government services. While many of the challenges have received considerable attention, there is still little to no firm research on others such as privacy and security risks, effects of infrastructure both in urban and rural settings. Other concerns that have received little consideration are how for instance; e-government serves as a function of perceived usefulness, ease of use, perceived benefit, as well as cultural dimensions and demographic constructs in South Africa. Guided by technology acceptance model, privacy calculus, Hofstede cultural theory and institutional logic theory, the current research sought to examine determinants of e- government use in developing countries. Anchored upon the aforementioned theories and background, the current study proposed three recommendations as potential value chain, derived from e-government service in response to citizens (end- user) support, government and community of stakeholders.
The world is witnessing an exceptional expansion in the cloud enabled services which is further growing day by day due to advancement & requirement of technology. However, the identification of vulnerabilities & its exploitation in the cloud computing will always be the major challenge and concern for any cloud computing system. To understand the challenges and its consequences and further provide mitigation techniques for the vulnerabilities, the identification of cloud specific vulnerabilities needs to be examined first and after identification of vulnerabilities a detailed taxonomy must be positioned. In this paper several cloud specific identified vulnerabilities have been studied which is listed by the NVD, ENISA CSA etc accordingly a unified taxonomy for security vulnerabilities has been prepared. In this paper we proposed a comprehensive taxonomy for cloud specific vulnerabilities on the basis of several parameters like attack vector, CVSS score, complexity etc which will be further act as input for the analysis and mitigation of cloud vulnerabilities. Scheming of Taxonomy of vulnerabilities is an effective way for cloud administrators, cloud mangers, cloud consumers and other stakeholders for identifying, understanding and addressing security risks.
Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.
The software development life cycle (SDLC) starts with business and functional specifications signed with a client. In addition to this, the specifications also capture policy / procedure / contractual / regulatory / legislation / standard compliances with respect to a given client industry. The SDLC must adhere to service level agreements (SLAs) while being compliant to development activities, processes, tools, frameworks, and reuse of open-source software components. In today's world, global software development happens across geographically distributed (autonomous) teams consuming extraordinary amounts of open source components drawn from a variety of disparate sources. Although this is helping organizations deal with technical and economic challenges, it is also increasing unintended risks, e.g., use of a non-complaint license software might lead to copyright issues and litigations, use of a library with vulnerabilities pose security risks etc. Mitigation of such risks and remedial measures is a challenge due to lack of visibility and transparency of activities across these distributed teams as they mostly operate in silos. We believe a unified model that non-invasively monitors and analyzes the activities of distributed teams will help a long way in building software that adhere to various compliances. In this paper, we propose a decentralized CAG - Compliance Adherence and Governance framework using blockchain technologies. Our framework (i) enables the capturing of required data points based on compliance specifications, (ii) analyzes the events for non-conformant behavior through smart contracts, (iii) provides real-time alerts, and (iv) records and maintains an immutable audit trail of various activities.
Machine learning has been adopted widely to perform prediction and classification. Implementing machine learning increases security risks when computation process involves sensitive data on training and testing computations. We present a proposed system to protect machine learning engines in IoT environment without modifying internal machine learning architecture. Our proposed system is designed for passwordless and eliminated the third-party in executing machine learning transactions. To evaluate our a proposed system, we conduct experimental with machine learning transactions on IoT board and measure computation time each transaction. The experimental results show that our proposed system can address security issues on machine learning computation with low time consumption.
Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.
It is a research hotspot that using blockchain technology to solve the security problems of the Internet of Things (IoT). Although many related ideas have been proposed, there are very few literatures with theoretical and data support. This paper focuses on the research of model construction and performance evaluation. First, an IoT security model is established based on blockchain and InterPlanetary File System (IPFS). In this model, many security risks of traditional IoT architectures can be avoided, and system performance is significantly improved in distributed large capacity storage, concurrency and query. Secondly, the performance of the proposed model is evaluated through the average latency and throughput, which are meaningful for further research and optimization of this direction. Analysis and test results demonstrate the effectiveness of the blockchain-based security model.
In context of Industry 4.0 Augmented Reality (AR) is frequently mentioned as the upcoming interface technology for human-machine communication and collaboration. Many prototypes have already arisen in both the consumer market and in the industrial sector. According to numerous experts it will take only few years until AR will reach the maturity level to be deployed in productive applications. Especially for industrial usage it is required to assess security risks and challenges this new technology implicates. Thereby we focus on plant operators, Original Equipment Manufacturers (OEMs) and component vendors as stakeholders. Starting from several industrial AR use cases and the structure of contemporary AR applications, in this paper we identify security assets worthy of protection and derive the corresponding security goals. Afterwards we elaborate the threats industrial AR applications are exposed to and develop an edge computing architecture for future AR applications which encompasses various measures to reduce security risks for our stakeholders.
With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.
Modern vehicles are opening up, with wireless interfaces such as Bluetooth integrated in order to enable comfort and safety features. Furthermore a plethora of aftermarket devices introduce additional connectivity which contributes to the driving experience. This connectivity opens the vehicle to potentially malicious attacks, which could have negative consequences with regards to safety. In this paper, we survey vehicles with Bluetooth connectivity from a threat intelligence perspective to gain insight into conditions during real world driving. We do this in two ways: firstly, by examining Bluetooth implementation in vehicles and gathering information from inside the cabin, and secondly, using war-nibbling (general monitoring and scanning for nearby devices). We find that as the vehicle age decreases, the security (relatively speaking) of the Bluetooth implementation increases, but that there is still some technological lag with regards to Bluetooth implementation in vehicles. We also find that a large proportion of vehicles and aftermarket devices still use legacy pairing (and are therefore more insecure), and that these vehicles remain visible for sufficient time to mount an attack (assuming some premeditation and preparation). We demonstrate a real-world threat scenario as an example of the latter. Finally, we provide some recommendations on how the security risks we discover could be mitigated.