Visible to the public Biblio

Filters: Keyword is Health Care  [Clear All Filters]
2020-06-01
Bhargavi, US., Gundibail, Shivaprasad, Manjunath, KN., Renuka, A..  2019.  Security of Medical Big Data Images using Decoy Technique. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :310–314.

Tele-radiology is a technology that helps in bringing the communication between the radiologist, patients and healthcare units situated at distant places. This involves exchange of medical centric data. The medical data may be stored as Electronic Health Records (EHR). These EHRs contain X-Rays, CT scans, MRI reports. Hundreds of scans across multiple radiology centers lead to medical big data (MBD). Healthcare Cloud can be used to handle MBD. Since lack of security to EHRs can cause havoc in medical IT, healthcare cloud must be secure. It should ensure secure sharing and storage of EHRs. This paper proposes the application of decoy technique to provide security to EHRs. The EHRs have the risk of internal attacks and external intrusion. This work addresses and handles internal attacks. It also involves study on honey-pots and intrusion detection techniques. Further it identifies the possibility of an intrusion and alerts the administrator. Also the details of intrusions are logged.

2020-05-04
Zalozhnev, Alexey Yu., Andros, Denis A., Ginz, Vasiliy N., Loktionov, Anatoly Eu..  2019.  Information Systems and Network Technologies for Personal Data Cyber Security in Public Health. 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–5.
The article focuses on Personal Data Cyber Security Systems. These systems are the critical components for Health Information Management Systems of Public Health enterprises. The purpose of this article is to inform and provide the reader with Personal Data Cyber Security Legislation and Regulation in Public Health Sector and enlighten him with the Information Systems that were designed and implemented for Personal Data Cyber Security in Public Health.
Rauscher, Julia, Bauer, Bernhard.  2018.  Safety and Security Architecture Analyses Framework for the Internet of Things of Medical Devices. 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom). :1–3.
Internet of Things (IoT) is spreading increasingly in different areas of application. Accordingly, IoT also gets deployed in health care including ambient assisted living, telemedicine or medical smart homes. However, IoT also involves risks. Next to increased security issues also safety concerns are occurring. Deploying health care sensors and utilizing medical data causes a high need for IoT architectures free of vulnerabilities in order to identify weak points as early as possible. To address this, we are developing a safety and security analysis approach including a standardized meta model and an IoT safety and security framework comprising a customizable analysis language.
2020-04-13
Avianto, Hana, Ogi, Dion.  2019.  Design of Electronic Medical Record Security Policy in Hospital Management Information System (SIMRS) in XYZ Hospital. 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI). :163–167.
Electronic Medical Record (EMR) is a medical record management system. EMR contains personal data of patients that is critical. The critical nature of medical records is the reason for the necessity to develop security policies as guidelines for EMR in SIMRS in XZY Hospital. In this study, analysis and risk assessment conducted to EMR management at SIMRS in XZY Hospital. Based on this study, the security of SIMRS in XZY Hospital is categorized as high. Security and Privacy Control mapping based on NIST SP800-53 rev 5 obtained 57 security controls related to privacy aspects as control options to protect EMR in SIMRS in XZY Hospital. The policy designing was done using The Triangle framework for Policy Analysis. The analysis obtained from the policy decisions of the head of XYZ Hospital. The contents of the security policy are provisions on the implementation of security policies of EMR, outlined of 17 controls were selected.
2020-04-10
Newaz, AKM Iqtidar, Sikder, Amit Kumar, Rahman, Mohammad Ashiqur, Uluagac, A. Selcuk.  2019.  HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). :389—396.
The integration of Internet-of-Things and pervasive computing in medical devices have made the modern healthcare system “smart.” Today, the function of the healthcare system is not limited to treat the patients only. With the help of implantable medical devices and wearables, Smart Healthcare System (SHS) can continuously monitor different vital signs of a patient and automatically detect and prevent critical medical conditions. However, these increasing functionalities of SHS raise several security concerns and attackers can exploit the SHS in numerous ways: they can impede normal function of the SHS, inject false data to change vital signs, and tamper a medical device to change the outcome of a medical emergency. In this paper, we propose HealthGuard, a novel machine learning-based security framework to detect malicious activities in a SHS. HealthGuard observes the vital signs of different connected devices of a SHS and correlates the vitals to understand the changes in body functions of the patient to distinguish benign and malicious activities. HealthGuard utilizes four different machine learning-based detection techniques (Artificial Neural Network, Decision Tree, Random Forest, k-Nearest Neighbor) to detect malicious activities in a SHS. We trained HealthGuard with data collected for eight different smart medical devices for twelve benign events including seven normal user activities and five disease-affected events. Furthermore, we evaluated the performance of HealthGuard against three different malicious threats. Our extensive evaluation shows that HealthGuard is an effective security framework for SHS with an accuracy of 91 % and an F1 score of 90 %.
2020-03-30
Mao, Huajian, Chi, Chenyang, Yu, Jinghui, Yang, Peixiang, Qian, Cheng, Zhao, Dongsheng.  2019.  QRStream: A Secure and Convenient Method for Text Healthcare Data Transferring. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3458–3462.
With the increasing of health awareness, the users become more and more interested in their daily health information and healthcare activities results from healthcare organizations. They always try to collect them together for better usage. Traditionally, the healthcare data is always delivered by paper format from the healthcare organizations, and it is not easy and convenient for data usage and management. They would have to translate these data on paper to digital version which would probably introduce mistakes into the data. It would be necessary if there is a secure and convenient method for electronic health data transferring between the users and the healthcare organizations. However, for the security and privacy problems, almost no healthcare organization provides a stable and full service for health data delivery. In this paper, we propose a secure and convenient method, QRStream, which splits original health data and loads them onto QR code frame streaming for the data transferring. The results shows that QRStream can transfer text health data smoothly with an acceptable performance, for example, transferring 10K data in 10 seconds.
2020-03-18
Padmashree, M G, Khanum, Shahela, Arunalatha, J S, Venugopal, K R.  2019.  SIRLC: Secure Information Retrieval using Lightweight Cryptography in HIoT. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :269–273.

Advances in new Communication and Information innovations has led to a new paradigm known as Internet of Things (IoT). Healthcare environment uses IoT technologies for Patients care which can be used in various medical applications. Patient information is encrypted consistently to maintain the access of therapeutic records by authoritative entities. Healthcare Internet of Things (HIoT) facilitate the access of Patient files immediately in emergency situations. In the proposed system, the Patient directly provides the Key to the Doctor in normal care access. In Emergency care, a Patient shares an Attribute based Key with a set of Emergency Supporting Representatives (ESRs) and access permission to the Doctor for utilizing Emergency key from ESR. The Doctor decrypts the medical records by using Attribute based key and Emergency key to save the Patient's life. The proposed model Secure Information Retrieval using Lightweight Cryptography (SIRLC) reduces the secret key generation time and cipher text size. The performance evaluation indicates that SIRLC is a better option to utilize in Healthcare IoT than Lightweight Break-glass Access Control(LiBAC) with enhanced security and reduced computational complexity.

2020-03-16
Hasavari, Shirin, Song, Yeong Tae.  2019.  A Secure and Scalable Data Source for Emergency Medical Care using Blockchain Technology. 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA). :71–75.
Emergency medical services universally get regarded as the essential part of the health care delivery system [1]. A relationship exists between the emergency patient death rate and factors such as the failure to access a patient's critical data and the time it takes to arrive at hospitals. Nearly thirty million Americans do not live within an hour of trauma care, so this poor access to trauma centers links to higher pre-hospital death rates in more than half of the United States [2]. So, we need to address the problem. In a patient care-cycle, loads of medical data items are born in different healthcare settings using a disparate system of records during patient visits. The ability for medical care providers to access a patient's complete picture of emergency-relevant medical data is critical and can significantly reduce the annual mortality rate. Today, the problem exists with a continuous recording system of the patient data between healthcare providers. In this paper, we've introduced a combination of secure file transfer methods/tools and blockchain technology as a solution to record patient Emergency relevant medical data as patient walk through from one clinic/medical facility to another, creating a continuous footprint of patient as a secure and scalable data source. So, ambulance crews can access and use it to provide high quality pre-hospital care. All concerns of medical record sharing and accessing like authentication, privacy, security, scalability and audibility, confidentiality has been considered in this approach.
2020-02-17
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.

Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.

2020-02-10
Cetin, Cagri, Goldgof, Dmitry, Ligatti, Jay.  2019.  SQL-Identifier Injection Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :151–159.
This paper defines a class of SQL-injection attacks that are based on injecting identifiers, such as table and column names, into SQL statements. An automated analysis of GitHub shows that 15.7% of 120,412 posted Java source files contain code vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We have manually verified that some of the 18,939 Java files identified during the automated analysis are indeed vulnerable to SQL-ID IAs, including deployed Electronic Medical Record software for which SQL-IDIAs enable discovery of confidential patient information. Although prepared statements are the standard defense against SQL injection attacks, existing prepared-statement APIs do not protect against SQL-IDIAs. This paper therefore proposes and evaluates an extended prepared-statement API to protect against SQL-IDIAs.
2020-01-21
Jimenez, Jaime Ibarra, Jahankhani, Hamid.  2019.  ``Privacy by Design'' Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-Based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2020-01-20
Almehmadi, Tahani, Alshehri, Suhair, Tahir, Sabeen.  2019.  A Secure Fog-Cloud Based Architecture for MIoT. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Medical Internet of Things (MIoT) offers innovative solutions to a healthier life, making radical changes in people's lives. Healthcare providers are enabled to continuously and remotely monitor their patients for many medial issues outside hospitals and healthcare providers' offices. MIoT systems and applications lead to increase availability, accessibility, quality and cost-effectiveness of healthcare services. On the other hand, MIoT devices generate a large amount of diverse real-time data, which is highly sensitive. Thus, securing medical data is an essential requirement when developing MIoT architectures. However, the MIoT architectures being developed in the literature have many security issues. To address the challenge of data security in MIoT, the integration of fog computing and MIoT is studied as an emerging and appropriate solution. By data security, it means that medial data is stored in fog nodes and transferred to the cloud in a secure manner to prevent any unauthorized access. In this paper, we propose a design for a secure fog-cloud based architecture for MIoT.

2019-08-26
Markakis, E., Nikoloudakis, Y., Pallis, E., Manso, M..  2019.  Security Assessment as a Service Cross-Layered System for the Adoption of Digital, Personalised and Trusted Healthcare. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :91-94.

The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.

2019-08-05
Jimenez, J. I., Jahankhani, H..  2019.  “Privacy by Design” Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2019-03-26
[Anonymous].  2019.  Synthesizing Stealthy Reprogramming Attacks on Cardiac Devices. IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS 2019).

An Implantable Cardioverter Defibrillator (ICD) is a medical device used for the detection of potentially fatal cardiac arrhythmias and their treatment through the delivery of electrical shocks intended to restore normal heart rhythm. An ICDreprogrammingattackseeks to alter the device’s parameters to induce unnecessary therapy or prevent required therapy. In this paper, we present a formal approach for the synthesis of ICD reprogramming attacks that are both effective, i.e., lead to fundamental changes in the required therapy, and stealthy, i.e., are hard to detect. We focus on the discrimination algorithm underlying Boston Scientific devices (one of the principal ICD manufacturers) and formulate the synthesis problem as one of multi-objective optimization. Our solution technique is based on an Optimization Modulo Theories encoding of the problem and allows us to derive device parameters that are optimal with respect to the effectiveness-stealthiness tradeoff. Our method can be tailored to the patient’s current condition, and readily generalizes to new rhythms. To the best of our knowledge, our work is the first to derive systematic ICD reprogramming attacks designed to maximize therapy disruption while minimizing detection.

2019-03-22
Mohammedi, M., Omar, M., Aitabdelmalek, W., Mansouri, A., Bouabdallah, A..  2018.  Secure and Lightweight Biometric-Based Remote Patient Authentication Scheme for Home Healthcare Systems. 2018 International Symposium on Programming and Systems (ISPS). :1-6.

Recently, the home healthcare system has emerged as one of the most useful technology for e-healthcare. Contrary to classical recording methods of patient's medical data, which are, based on paper documents, nowadays all this sensitive data can be managed and forwarded through digital systems. These make possible for both patients and healthcare workers to access medical data or receive remote medical treatment using wireless interfaces whenever and wherever. However, simplifying access to these sensitive and private data can directly put patient's health and life in danger. In this paper, we propose a secure and lightweight biometric-based remote patient authentication scheme using elliptic curve encryption through which two mobile healthcare system communication parties could authenticate each other in public mobile healthcare environments. The security and performance analysis demonstrate that our proposal achieves better security than other concurrent schemes, with lower storage, communication and computation costs.

2019-01-31
Arfaoui, A., Kribeche, A., Boudia, O. R. M., Letaifa, A. Ben, Senouci, S. M., Hamdi, M..  2018.  Context-Aware Authorization and Anonymous Authentication in Wireless Body Area Networks. 2018 IEEE International Conference on Communications (ICC). :1–7.

With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.

2018-12-10
Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

2018-11-14
Iwaya, L. H., Fischer-Hübner, S., \AAhlfeldt, R., Martucci, L. A..  2018.  mHealth: A Privacy Threat Analysis for Public Health Surveillance Systems. 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). :42–47.

Community Health Workers (CHWs) have been using Mobile Health Data Collection Systems (MDCSs) for supporting the delivery of primary healthcare and carrying out public health surveys, feeding national-level databases with families' personal data. Such systems are used for public surveillance and to manage sensitive data (i.e., health data), so addressing the privacy issues is crucial for successfully deploying MDCSs. In this paper we present a comprehensive privacy threat analysis for MDCSs, discuss the privacy challenges and provide recommendations that are specially useful to health managers and developers. We ground our analysis on a large-scale MDCS used for primary care (GeoHealth) and a well-known Privacy Impact Assessment (PIA) methodology. The threat analysis is based on a compilation of relevant privacy threats from the literature as well as brain-storming sessions with privacy and security experts. Among the main findings, we observe that existing MDCSs do not employ adequate controls for achieving transparency and interveinability. Thus, threatening fundamental privacy principles regarded as data quality, right to access and right to object. Furthermore, it is noticeable that although there has been significant research to deal with data security issues, the attention with privacy in its multiple dimensions is prominently lacking.

Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K..  2018.  Context-Based Security and Privacy for Healthcare IoT. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT). :122–128.

Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.

2018-10-26
Chaudhry, J., Saleem, K., Islam, R., Selamat, A., Ahmad, M., Valli, C..  2017.  AZSPM: Autonomic Zero-Knowledge Security Provisioning Model for Medical Control Systems in Fog Computing Environments. 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). :121–127.

The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.

2018-09-28
Alnemari, A., Romanowski, C. J., Raj, R. K..  2017.  An Adaptive Differential Privacy Algorithm for Range Queries over Healthcare Data. 2017 IEEE International Conference on Healthcare Informatics (ICHI). :397–402.

Differential privacy is an approach that preserves patient privacy while permitting researchers access to medical data. This paper presents mechanisms proposed to satisfy differential privacy while answering a given workload of range queries. Representing input data as a vector of counts, these methods partition the vector according to relationships between the data and the ranges of the given queries. After partitioning the vector into buckets, the counts of each bucket are estimated privately and split among the bucket's positions to answer the given query set. The performance of the proposed method was evaluated using different workloads over several attributes. The results show that partitioning the vector based on the data can produce more accurate answers, while partitioning the vector based on the given workload improves privacy. This paper's two main contributions are: (1) improving earlier work on partitioning mechanisms by building a greedy algorithm to partition the counts' vector efficiently, and (2) its adaptive algorithm considers the sensitivity of the given queries before providing results.

2018-07-06
Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N. K..  2015.  Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare. IEEE Journal of Biomedical and Health Informatics. 19:1893–1905.

Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

2018-05-16
Yavari, A., Panah, A. S., Georgakopoulos, D., Jayaraman, P. P., Schyndel, R. v.  2017.  Scalable Role-Based Data Disclosure Control for the Internet of Things. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2226–2233.

The Internet of Things (IoT) is the latest Internet evolution that interconnects billions of devices, such as cameras, sensors, RFIDs, smart phones, wearable devices, ODBII dongles, etc. Federations of such IoT devices (or things) provides the information needed to solve many important problems that have been too difficult to harness before. Despite these great benefits, privacy in IoT remains a great concern, in particular when the number of things increases. This presses the need for the development of highly scalable and computationally efficient mechanisms to prevent unauthorised access and disclosure of sensitive information generated by things. In this paper, we address this need by proposing a lightweight, yet highly scalable, data obfuscation technique. For this purpose, a digital watermarking technique is used to control perturbation of sensitive data that enables legitimate users to de-obfuscate perturbed data. To enhance the scalability of our solution, we also introduce a contextualisation service that achieve real-time aggregation and filtering of IoT data for large number of designated users. We, then, assess the effectiveness of the proposed technique by considering a health-care scenario that involves data streamed from various wearable and stationary sensors capturing health data, such as heart-rate and blood pressure. An analysis of the experimental results that illustrate the unconstrained scalability of our technique concludes the paper.