Visible to the public Biblio

Filters: Keyword is DNA cryptography  [Clear All Filters]
2021-02-08
Saleh, A. H., Yousif, A. S., Ahmed, F. Y. H..  2020.  Information Hiding for Text Files by Adopting the Genetic Algorithm and DNA Coding. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :220–223.
Hiding information is a process to hide data or include it in different digital media such as image, audio, video, and text. However, there are many techniques to achieve the process of hiding information in the image processing, in this paper, a new method has been proposed for hidden data mechanism (which is a text file), then a transposition cipher method has been employed for encryption completed. It can be used to build an encrypted text and also to increase security against possible attacks while sending it over the World Wide Web. A genetic algorithm has been affected in the adjustment of the encoded text and DNA in the creation of an encrypted text that is difficult to detect and then include in the image and that affected the image visual quality. The proposed method outperforms the state of arts in terms of efficiently retrieving the embedded messages. Performance evaluation has been recorded high visual quality scores for the (SNR (single to noise ratio), PSNR (peak single to noise ratio) and MSE (mean square error).
Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

Akkasaligar, P. T., Biradar, S..  2020.  Medical Image Compression and Encryption using Chaos based DNA Cryptography. 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC). :1–5.
In digital communication, the transmission of medical images over communication network is very explosive. We need a communication system to transmit the medical information rapidly and securely. In this manuscript, we propose a cryptosystem with novel encoding strategy and lossless compression technique. The chaos based DNA cryptography is used to enrich security of medical images. The lossless Discrete Haar Wavelet Transform is used to reduce space and time efficiency during transmission. The cryptanalysis proves that proposed cryptosystem is secure against different types of attacks. The compression ratio and pixel comparison is performed to verify the similarity of retained medical image.
Pradeeksha, A. Shirley, Sathyapriya, S. Sridevi.  2020.  Design and Implementation of DNA Based Cryptographic Algorithm. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). :299–302.
The intensity of DNA figuring will reinforce the current security on frameworks by opening up another probability of a half and half cryptographic framework. Here, we are exhibiting the DNA S-box for actualizing cryptographic algorithm. The DNA based S-Box is designed using vivado software and implemented using Artix-7 device. The main aim is to design the DNA based S-box to increase the security. Also pipelining and parallelism techniques are to be implement in future to increase the speed.
Kumar, B. M., Sri, B. R. S., Katamaraju, G. M. S. A., Rani, P., Harinadh, N., Saibabu, C..  2020.  File Encryption and Decryption Using DNA Technology. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :382–385.
Cryptography is the method of transforming the original texted message into an unknown form and in reverse also. It is the process of hiding and forwarding the data in an appropriate form so that only authorized persons can know and can process it. Cryptographic process secures the data from hijacking or transmutation, it is mainly used for users data security. This paper justifies the encryption and decryption using DNA(Deoxyribo Nucleic Acid) sequence. This process includes several intermediate steps, the perception of binary-coded form and generating of arbitrary keys is used to encrypt the message. A common key should be established between the sender and receiver for encryption and decryption process. The common key provides more security to the sequence. In this paper, both the process of binary-coded form and generating of arbitrary keys are used to encrypt the message. It is widely used in an institution and by every individual to hide their data from the muggers and hijackers and provides the data securely, and confidentially over the transmission of information.
2020-06-22
Nisperos, Zhella Anne V., Gerardo, Bobby D., Hernandez, Alexander A..  2019.  A Coverless Approach to Data Hiding Using DNA Sequences. 2019 2nd World Symposium on Communication Engineering (WSCE). :21–25.
In recent years, image steganography is being considered as one of the methods to secure the confidentiality of sensitive and private data sent over networks. Conventional image steganography techniques use cover images to hide secret messages. These techniques are susceptible to steganalysis algorithms based on anomaly detection. This paper proposes a new approach to image steganography without using cover images. In addition, it utilizes Deoxyribonucleic Acid (DNA) sequences. DNA sequences are used to generate key and stego-image. Experimental results show that the use of DNA sequences in this technique offer very low cracking probability and the coverless approach contributes to its high embedding capacity.
Ravichandran, Dhivya, Fathima, Sherin, Balasubramanian, Vidhyadharini, Banu, Aashiq, Anushiadevi, Amirtharajan, Rengarajan.  2019.  DNA and Chaos Based Confusion-Diffusion for Color Image Security. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
Nowadays, secure transmission of multimedia files has become more significant concern with the evolution of technologies. Cryptography is the well-known technique to safeguard the files from various destructive hacks. In this work, a colour image encryption scheme is suggested using chaos and Deoxyribo Nucleic Acid (DNA) coding. The encryption scheme is carried out in two stages namely confusion and diffusion. As the first stage, chaos aided inter-planar row and column shuffling are performed to shuffle the image pixels completely. DNA coding and decoding operations then diffuse the resultant confused image with the help of eight DNA XOR rules. This confusion-diffusion process has achieved the entropy value equal to 7.9973 and correlation coefficient nearer to zero with key space of 10140. Various other analyses are also done to ensure the effectiveness of the developed algorithm. The results show that the proposed scheme can withstand different attacks and better than the recent state-of-art methods.
Das, Subhajit, Mondal, Satyendra Nath, Sanyal, Manas.  2019.  A Novel Approach of Image Encryption Using Chaos and Dynamic DNA Sequence. 2019 Amity International Conference on Artificial Intelligence (AICAI). :876–880.
In this paper, an image encryption scheme based on dynamic DNA sequence and two dimension logistic map is proposed. Firstly two different pseudo random sequences are generated using two dimension Sine-Henon alteration map. These sequences are used for altering the positions of each pixel of plain image row wise and column wise respectively. Secondly each pixels of distorted image and values of random sequences are converted into a DNA sequence dynamically using one dimension logistic map. Reversible DNA operations are applied between DNA converted pixel and random values. At last after decoding the results of DNA operations cipher image is obtained. Different theoretical analyses and experimental results proved the effectiveness of this algorithm. Large key space proved that it is possible to protect different types of attacks using our proposed encryption scheme.
Sreenivasan, Medha, Sidhardhan, Anargh, Priya, Varnitha Meera, V., Thanikaiselvan.  2019.  5D Combined Chaotic System for Image Encryption with DNA Encoding and Scrambling. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
The objective of this paper was to propose a 5D combined chaotic system used for image encryption by scrambling and DNA encryption. The initial chaotic values were calculated with a set of equations. The chaotic sequences were used for pixel scrambling, bit scrambling, DNA encryption and DNA complementary function. The average of NPCR, UACI and entropy values of the 6 images used for testing were 99.61, 33.51 and 7.997 respectively. The correlation values obtained for the encrypted image were much lower than the corresponding original image. The histogram of the encrypted image was flat. Based on the theoretical results from the tests performed on the proposed system it can be concluded that the system is suited for practical applications, since it offers high security.
Roy, Mousomi, Chakraborty, Shouvik, Mali, Kalyani, Mitra, Sourav, Mondal, Ishita, Dawn, Rabidipto, Das, Dona, Chatterjee, Sankhadeep.  2019.  A Dual Layer Image Encryption using Polymerase Chain Reaction Amplification and DNA Encryption. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–4.
Unauthorized access of the data is one of the major threat for the real world digital data communication. Digital images are one of the most vital subset of the digital data. Several important and sensitive information is conveyed through digital images. Hence, digital image security is one of the foremost interest of the researchers. Cryptographic algorithms Biological sequences are often used to encrypt data due to their inherent features. DNA encryption is one of the widely used method used for data security which is based on the properties of the biological sequences. To protect the images from unwanted accesses, a new two stage method is proposed in this work. DNA Encryption and Polymerase Chain Reaction (PCR) Amplification is used to enhance the security. The proposed method is evaluated using different standard parameters that shows the efficiency of the algorithm.
Singh, Shradhanjali, Sharma, Yash.  2019.  A Review on DNA based Cryptography for Data hiding. 2019 International Conference on Intelligent Sustainable Systems (ICISS). :282–285.
In today's world, securing data is becoming one of the main issues, the elaboration of the fusion of cryptography and steganography are contemplating as the sphere of on-going research. This can be gain by cryptography, steganography, and fusion of these two, where message firstly encoding using any cryptography techniques and then conceal into any cover medium using steganography techniques. Biological structure of DNA is used as the cover medium due to high storage capacity, simple encoding method, massive parallelism and randomness DNA cryptography can be used in identification card and tickets. Currently work in this field is still in the developmental stage and a lot of investigation is required to reach a fully-fledged stage. This paper provides a review of the existing method of DNA based cryptography
Vikram, A., Kalaivani, S., Gopinath, G..  2019.  A Novel Encryption Algorithm based on DNA Cryptography. 2019 International Conference on Communication and Electronics Systems (ICCES). :1004–1009.
The process of information security entails securing the information by transferring it through the networks preventing the data from attacks. This way of securing the information is known as cryptography. The perspective of converting the plain-text into non-understandable format is known as cryptography that could be possible using certain cryptography algorithms. The security could not be offered by the conventional cryptographic algorithms that lacks in their security for the huge amount of growing data, which could be easily broken by the intruders for their malicious activities. This gives rise to the new cryptographic algorithm known as DNA computing that could strengthen the information security, which does not provide any intruders to get authorized to confidential data. The proposed DNA symmetric cryptography enhances information security. The results reveal that encryption process carried out on plain-text is highly secured.
Bhavani, Y., Puppala, Sai Srikar, Krishna, B.Jaya, Madarapu, Srija.  2019.  Modified AES using Dynamic S-Box and DNA Cryptography. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :164–168.
Today the frequency of technological transformations is very high. In order to cope up with these, there is a demand for fast processing and secured algorithms should be proposed for data exchange. In this paper, Advanced Encryption Standard (AES) is modified using DNA cryptography for fast processing and dynamic S-boxes are introduced to develop an attack resistant algorithm. This is strengthened by combining symmetric and asymmetric algorithms. Diffie-Hellman key exchange is used for AES key generation and also for secret number generation used for creation of dynamic S-boxes. The proposed algorithm is fast in computation and can resist cryptographic attacks like linear and differential cryptanalysis attacks.
2020-01-07
Radhakrishnan, Vijayanand, Durairaj, Devaraj, Balasubramanian, Kannapiran, Kamatchi, Kartheeban.  2019.  Development Of A Novel Security Scheme Using DNA Biocryptography For Smart Meter Data Communication. 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). :237-244.

Data security is a major requirement of smart meter communication to control server through Advanced Metering infrastructure. Easy access of smart meters and multi-faceted nature of AMI communication network are the main reasons of smart meter facing large number of attacks. The different topology, bandwidth and heterogeneity in communication network prevent the existing security mechanisms in satisfying the security requirements of smart meter. Hence, advanced security mechanisms are essential to encrypt smart meter data before transmitting to control server. The emerging biocryptography technique has several advantages over existing techniques and is most suitable for providing security to communication of low processing devices like smart meter. In this paper, a lightweight encryption scheme using DNA sequence with suitable key management scheme is proposed for secure communication of smart meter in an efficient way. The proposed 2-phase DNA cryptography provides confidentiality and integrity to transmitted data and the authentication of keys is attained by exchanging through Diffie Hellman scheme. The strength of proposed encryption scheme is analyzed and its efficiency is evaluated by simulating an AMI communication network using Simulink/Matlab. Comparison of simulation results with various techniques show that the proposed scheme is suitable for secure communication of smart meter data.

Li, Yongnan, Xiao, Limin.  2019.  Parallel DNA Computing Model of Point-Doubling in Conic Curves Cryptosystem over Finite Field GF(2ˆn). 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1564-1571.

DNA cryptography becomes a burgeoning new area of study along with the fast-developing of DNA computing and modern cryptography. Point-doubling, point-addition and point-multiplication are three fundamental point-operations to construct encryption protocols in some cryptosystem over mathematical curves such as elliptic curves and conic curves. This paper proposes a DNA computing model to calculate point-doubling in conic curves cryptosystem over finite held GF(2n). By decomposing and rearranging the computing steps of point-doubling, the assembly process could be fulfilled by using 8 different types of computation tiles performing different functions with 1097 encoding ways. This model could also figure out point-multiplication if its coefficient is 2k. The assembly time complexity is 2kn+n-k-1, and the space complexity is k2n2+kn2-k2n.

Hammami, Hamza, Brahmi, Hanen, Ben Yahia, Sadok.  2018.  Secured Outsourcing towards a Cloud Computing Environment Based on DNA Cryptography. 2018 International Conference on Information Networking (ICOIN). :31-36.

Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.

Aparna, H., Bhoomija, Faustina, Devi, R. Santhiya, Thenmozhi, K., Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Image Encryption Based on Quantum-Assisted DNA Coded System. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1-4.

Information security is winding up noticeably more vital in information stockpiling and transmission. Images are generally utilised for various purposes. As a result, the protection of image from the unauthorised client is critical. Established encryption techniques are not ready to give a secure framework. To defeat this, image encryption is finished through DNA encoding which is additionally included with confused 1D and 2D logistic maps. The key communication is done through the quantum channel using the BB84 protocol. To recover the encrypted image DNA decoding is performed. Since DNA encryption is invertible, decoding can be effectively done through DNA subtraction. It decreases the complexity and furthermore gives more strength when contrasted with traditional encryption plans. The enhanced strength of the framework is measured utilising measurements like NPCR, UACI, Correlation and Entropy.

Zebari, Dilovan Asaad, Haron, Habibollah, Zeebaree, Subhi R. M., Qader Zeebaree, Diyar.  2018.  Multi-Level of DNA Encryption Technique Based on DNA Arithmetic and Biological Operations. 2018 International Conference on Advanced Science and Engineering (ICOASE). :312-317.

Networks have evolved very rapidly, which allow secret data transformation speedily through the Internet. However, the security of secret data has posed a serious threat due to openness of these networks. Thus, researchers draw their attention on cryptography field for this reason. Due to the traditional cryptographic techniques which are vulnerable to intruders nowadays. Deoxyribonucleic Acid (DNA) considered as a promising technology for cryptography field due to extraordinary data density and vast parallelism. With the help of the various DNA arithmetic and biological operations are also Blum Blum Shub (BBS) generator, a multi-level of DNA encryption algorithm is proposed here. The algorithm first uses the dynamic key generation to encrypt sensitive information as a first level; second, it uses BBS generator to generate a random DNA sequence; third, the BBS-DNA sequence spliced with a DNA Gen Bank reference to produce a new DNA reference. Then, substitution, permutation, and dynamic key are used to scramble the new DNA reference nucleotides locations. Finally, for further enhanced security, an injective mapping is established to combine encrypted information with encrypted DNA reference using Knight tour movement in Hadamard matrix. The National Institute of Standard and Technology (NIST) tests have been used to test the proposed algorithm. The results of the tests demonstrate that they effectively passed all the randomness tests of NIST which means they can effectively resist attack operations.

Akiwate, Bahubali, Parthiban, Latha.  2018.  A Dynamic DNA for Key-Based Cryptography. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS). :223-227.

A dynamic DNA for key-based Cryptography that encrypt and decrypt plain text characters, text file, image file and audio file using DNA sequences. Cryptography is always taken as the secure way while transforming the confidential information over the network such as LAN, Internet. But over the time, the traditional cryptographic approaches are been replaced with more effective cryptographic systems such as Quantum Cryptography, Biometric Cryptography, Geographical Cryptography and DNA Cryptography. This approach accepts the DNA sequences as the input to generate the key that going to provide two stages of data security.

2019-04-29
Kar, Diptendu Mohan, Ray, Indrajit, Gallegos, Jenna, Peccoud, Jean.  2018.  Digital Signatures to Ensure the Authenticity and Integrity of Synthetic DNA Molecules. Proceedings of the New Security Paradigms Workshop. :110–122.

DNA synthesis has become increasingly common, and many synthetic DNA molecules are licensed intellectual property (IP). DNA samples are shared between academic labs, ordered from DNA synthesis companies and manipulated for a variety of different purposes, mostly to study their properties and improve upon them. However, it is not uncommon for a sample to change hands many times with very little accompanying information and no proof of origin. This poses significant challenges to the original inventor of a DNA molecule, trying to protect her IP rights. More importantly, following the anthrax attacks of 2001, there is an increased urgency to employ microbial forensic technologies to trace and track agent inventories. However, attribution of physical samples is next to impossible with existing technologies. In this paper, we describe our efforts to solve this problem by embedding digital signatures in DNA molecules synthesized in the laboratory. We encounter several challenges that we do not face in the digital world. These challenges arise primarily from the fact that changes to a physical DNA molecule can affect its properties, random mutations can accumulate in DNA samples over time, DNA sequencers can sequence (read) DNA erroneously and DNA sequencing is still relatively expensive (which means that laboratories would prefer not to read and re-read their DNA samples to get error-free sequences). We address these challenges and present a digital signature technology that can be applied to synthetic DNA molecules in living cells.

2019-02-14
Sharaieh, A., Edinat, A., AlFarraji, S..  2018.  An Enhanced Polyalphabetic Algorithm on Vigenerecipher with DNA-Based Cryptography. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-6.

Several algorithms were introduced in data encryption and decryptionsto protect threats and intruders from stealing and destroying data. A DNA cryptography is a new concept that has attracted great interest in the information security. In this paper, we propose a new enhanced polyalphabetic cipher algorithm (EPCA) as enhanced algorithm for the Vigenere cipher to avoid the limitations and the weakness of Vigenere cipher. A DNA technology is used to convert binary data to DNA strand. We compared the EPCA with Vigenere cipher in terms of memory space and run time. The EPCA has theoretical run time of O(N), at worst case. The EPCA shows better performance in average memory space and closed results in average running time, for the tested data.

2018-04-02
Biswas, M. R., Alam, K. M. R., Akber, A., Morimoto, Y..  2017.  A DNA Cryptographic Technique Based on Dynamic DNA Encoding and Asymmetric Cryptosystem. 2017 4th International Conference on Networking, Systems and Security (NSysS). :1–8.

This paper proposes a new DNA cryptographic technique based on dynamic DNA encoding and asymmetric cryptosystem to increase the level of secrecy of data. The key idea is: to split the plaintext into fixed sized chunks, to encrypt each chunk using asymmetric cryptosystem and finally to merge the ciphertext of each chunk using dynamic DNA encoding. To generate chunks, characters of the plaintext are transformed into their equivalent ASCII values and split it into finite values. Now to encrypt each chunk, asymmetric cryptosystem is applied and the ciphertext is transformed into its equivalent binary value. Then this binary value is converted into DNA bases. Finally to merge each chunk, sufficient random strings are generated. Here to settle the required number of random strings, dynamic DNA encoding is exploited which is generated using Fibonacci series. Thus the use of finite chunks, asymmetric cryptosystem, random strings and dynamic DNA encoding increases the level of security of data. To evaluate the encryption-decryption time requirement, an empirical analysis is performed employing RSA, ElGamal and Paillier cryptosystems. The proposed technique is suitable for any use of cryptography.

2018-01-23
Aledhari, M., Marhoon, A., Hamad, A., Saeed, F..  2017.  A New Cryptography Algorithm to Protect Cloud-Based Healthcare Services. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :37–43.

The revolution of smart devices has a significant and positive impact on the lives of many people, especially in regard to elements of healthcare. In part, this revolution is attributed to technological advances that enable individuals to wear and use medical devices to monitor their health activities, but remotely. Also, these smart, wearable medical devices assist health care providers in monitoring their patients remotely, thereby enabling physicians to respond quickly in the event of emergencies. An ancillary advantage is that health care costs will be reduced, another benefit that, when paired with prompt medical treatment, indicates significant advances in the contemporary management of health care. However, the competition among manufacturers of these medical devices creates a complexity of small and smart wearable devices such as ECG and EMG. This complexity results in other issues such as patient security, privacy, confidentiality, and identity theft. In this paper, we discuss the design and implementation of a hybrid real-time cryptography algorithm to secure lightweight wearable medical devices. The proposed system is based on an emerging innovative technology between the genomic encryptions and the deterministic chaos method to provide a quick and secure cryptography algorithm for real-time health monitoring that permits for threats to patient confidentiality to be addressed. The proposed algorithm also considers the limitations of memory and size of the wearable health devices. The experimental results and the encryption analysis indicate that the proposed algorithm provides a high level of security for the remote health monitoring system.

Al-Mashhadi, H. M., Abduljaleel, I. Q..  2017.  Color image encryption using chaotic maps, triangular scrambling, with DNA sequences. 2017 International Conference on Current Research in Computer Science and Information Technology (ICCIT). :93–98.

Applying security to the transmitted image is very important issues, because the transmission channel is open and can be compromised by attackers. To secure this channel from the eavesdropping attack, man in the middle attack, and so on. A new hybrid encryption image mechanism that utilize triangular scrambling, DNA encoding and chaotic map is implemented. The scheme takes a master key with a length of 320 bit, and produces a group of sub-keys with two length (32 and 128 bit) to encrypt the blocks of images, then a new triangular scrambling method is used to increase the security of the image. Many experiments are implemented using several different images. The analysis results for these experiments show that the security obtained on by using the proposed method is very suitable for securing the transmitted images. The current work has been compared with other works and the result of comparison shows that the current work is very strong against attacks.

Wang, B., Song, W., Lou, W., Hou, Y. T..  2017.  Privacy-preserving pattern matching over encrypted genetic data in cloud computing. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Personalized medicine performs diagnoses and treatments according to the DNA information of the patients. The new paradigm will change the health care model in the future. A doctor will perform the DNA sequence matching instead of the regular clinical laboratory tests to diagnose and medicate the diseases. Additionally, with the help of the affordable personal genomics services such as 23andMe, personalized medicine will be applied to a great population. Cloud computing will be the perfect computing model as the volume of the DNA data and the computation over it are often immense. However, due to the sensitivity, the DNA data should be encrypted before being outsourced into the cloud. In this paper, we start from a practical system model of the personalize medicine and present a solution for the secure DNA sequence matching problem in cloud computing. Comparing with the existing solutions, our scheme protects the DNA data privacy as well as the search pattern to provide a better privacy guarantee. We have proved that our scheme is secure under the well-defined cryptographic assumption, i.e., the sub-group decision assumption over a bilinear group. Unlike the existing interactive schemes, our scheme requires only one round of communication, which is critical in practical application scenarios. We also carry out a simulation study using the real-world DNA data to evaluate the performance of our scheme. The simulation results show that the computation overhead for real world problems is practical, and the communication cost is small. Furthermore, our scheme is not limited to the genome matching problem but it applies to general privacy preserving pattern matching problems which is widely used in real world.