Zhang, Zhaoqian, Zhang, Jianbiao, Yuan, Yilin, Li, Zheng.
2021.
An Expressive Fully Policy-Hidden Ciphertext Policy Attribute-Based Encryption Scheme with Credible Verification Based on Blockchain. IEEE Internet of Things Journal. :1–1.
As the public cloud becomes one of the leading ways in data sharing nowadays, data confidentiality and user privacy are increasingly critical. Partially policy-hidden ciphertext policy attribute-based encryption (CP-ABE) can effectively protect data confidentiality while reducing privacy leakage by hiding part of the access structure. However, it cannot satisfy the need of data sharing in the public cloud with complex users and large amounts of data, both in terms of less expressive access structures and limited granularity of policy hiding. Moreover, the verification of access right to shared data and correctness of decryption are ignored or conducted by an untrusted third party, and the prime-order groups are seldom considered in the expressive policy-hidden schemes. This paper proposes a fully policy-hidden CP-ABE scheme constructed on LSSS access structure and prime-order groups for public cloud data sharing. To help users decrypt, HVE with a ``convert step'' is applied, which is more compatible with CP-ABE. Meanwhile, decentralized credible verification of access right to shared data and correctness of decryption based on blockchain are also provided. We prove the security of our scheme rigorously and compare the scheme with others comprehensively. The results show that our scheme performs better.
Conference Name: IEEE Internet of Things Journal
Shehab, Manal, Korany, Noha, Sadek, Nayera.
2021.
Evaluation of the IP Identification Covert Channel Anomalies Using Support Vector Machine. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
IP Identification (IP ID) is an IP header field that identifies a data packet in the network to distinguish its fragments from others during the reassembly process. Random generated IP ID field could be used as a covert channel by embedding hidden bits within it. This paper uses the support vector machine (SVM) while enabling a features reduction procedure for investigating to what extend could the entropy feature of the IP ID covert channel affect the detection. Then, an entropy-based SVM is employed to evaluate the roles of the IP ID covert channel hidden bits on detection. Results show that, entropy is a distinct discrimination feature in classifying and detecting the IP ID covert channel with high accuracy. Additionally, it is found that each of the type, the number and the position of the hidden bits within the IP ID field has a specified influence on the IP ID covert channel detection accuracy.
Fionov, Andrey, Klevtsov, Alexandr.
2021.
Eliminating Broadband Covert Channels in DSA-Like Signatures. 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY). :45–48.
The Digital Signature Algorithm (DSA) is a representative of a family of digital signature algorithms that are known to have a number of subliminal channels for covert data transmission. The capacity of these channels stretches from several bits (narrowband channels) to about 256 or so bits (a broadband channel). There are a couple of methods described in the literature to prevent the usage of the broadband channel with the help of a warden. In the present paper, we discuss some weaknesses of the known methods and suggest a solution that is free of the weaknesses and eliminates the broadband covert channel. Our solution also requires a warden who does not participate in signature generation and is able to check any signed message for the absence of the covert communication.
Johnson, Andrew, Haddad, Rami J..
2021.
Evading Signature-Based Antivirus Software Using Custom Reverse Shell Exploit. SoutheastCon 2021. :1–6.
Antivirus software is considered to be the primary line of defense against malicious software in modern computing systems. The purpose of this paper is to expose exploitation that can evade Antivirus software that uses signature-based detection algorithms. In this paper, a novel approach was proposed to change the source code of a common Metasploit-Framework used to compile the reverse shell payload without altering its functionality but changing its signature. The proposed method introduced an additional stage to the shellcode program. Instead of the shellcode being generated and stored within the program, it was generated separately and stored on a remote server and then only accessed when the program is executed. This approach was able to reduce its detectability by the Antivirus software by 97% compared to a typical reverse shell program.
Arfeen, Asad, Ahmed, Saad, Khan, Muhammad Asim, Jafri, Syed Faraz Ali.
2021.
Endpoint Detection Amp; Response: A Malware Identification Solution. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–8.
Malicious hackers breach security perimeters, cause infrastructure disruptions as well as steal proprietary information, financial data, and violate consumers' privacy. Protection of the whole organization by using the firm's security officers can be besieged with faulty warnings. Engineers must shift from console to console to put together investigative clues as a result of today's fragmented security technologies that cause frustratingly sluggish investigations. Endpoint Detection and Response (EDR) solutions adds an extra layer of protection to prevent an endpoint action into a breach. EDR is the region's foremost detection and response tool that combines endpoint and network data to recognize and respond to sophisticated threats. Offering unrivaled security and operational effectiveness, it integrates prevention, investigation, detection, and responding in a single platform. EDR provides enterprise coverage and uninterrupted defense with its continuous monitoring and response to threats. We have presented a comprehensive review of existing EDRs through various security layers that includes detection, response and management capabilities which enables security teams to have unified end-to-end corporate accessibility, powerful analytics along with additional features such as web threat scan, external device scan and automatic reaction across the whole technological tower.
A, Meharaj Begum, Arock, Michael.
2021.
Efficient Detection Of SQL Injection Attack(SQLIA) Using Pattern-based Neural Network Model. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :343–347.
Web application vulnerability is one of the major causes of cyber attacks. Cyber criminals exploit these vulnerabilities to inject malicious commands to the unsanitized user input in order to bypass authentication of the database through some cyber-attack techniques like cross site scripting (XSS), phishing, Structured Query Language Injection Attack (SQLIA), malware etc., Although many research works have been conducted to resolve the above mentioned attacks, only few challenges with respect to SQLIA could be resolved. Ensuring security against complete set of malicious payloads are extremely complicated and demanding. It requires appropriate classification of legitimate and injected SQL commands. The existing approaches dealt with limited set of signatures, keywords and symbols of SQL queries to identify the injected queries. This work focuses on extracting SQL injection patterns with the help of existing parsing and tagging techniques. Pattern-based tags are trained and modeled using Multi-layer Perceptron which significantly performs well in classification of queries with accuracy of 94.4% which is better than the existing approaches.
McManus, Maxwell, Guan, Zhangyu, Bentley, Elizabeth Serena, Pudlewski, Scott.
2021.
Experimental Analysis of Cross-Layer Sensing for Protocol-Agnostic Packet Boundary Recognition. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Radio-frequency (RF) sensing is a key technology for designing intelligent and secure wireless networks with high spectral efficiency and environment-aware adaptation capabilities. However, existing sensing techniques can extract only limited information from RF signals or assume that the RF signals are generated by certain known protocols. As a result, their applications are limited if proprietary protocols or encryption methods are adopted, or in environments subject to errors such as unintended interference. To address this challenge, we study protocol-agnostic cross-layer sensing to extract high-layer protocol information from raw RF samples without any a priori knowledge of the protocols. First, we present a framework for protocol-agnostic sensing for over-the-air (OTA) RF signals, by taking packet boundary recognition (PBR) as an example. The framework consists of three major components: OTA Signal Generator, Agnostic RF Sink, and Ground Truth Generator. Then, we develop a software-defined testbed using USRP SDRs, with eleven benchmark statistical algorithms implemented in the Agnostic RF Sink, including Kullback-Leibler divergence and cross-power spectral density, among others. Finally, we test the effectiveness of these statistical algorithms in PBR on OTA RF samples, considering a wide variety of transmission parameters, including modulation type, transmission distance, and packet length. It is found that none of these benchmark statistical algorithms can achieve consistently high PBR rate, and new algorithms are required particularly in next-generation low-latency wireless systems.
Cordoș, Claudia, Mihail\u a, Laura, Faragó, Paul, Hintea, Sorin.
2021.
ECG Signal Classification Using Convolutional Neural Networks for Biometric Identification. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :167–170.
The latest security methods are based on biometric features. The electrocardiogram is increasingly used in such systems because it provides biometric features that are difficult to falsify. This paper aims to study the use of the electrocardiogram together with the Convolutional Neural Networks, in order to identify the subjects based on the ECG signal and to improve the security. In this study, we used the Fantasia database, available on the PhysioNet platform, which contains 40 ECG recordings. The ECG signal is pre-processed, and then spectrograms are generated for each ECG signal. Spectrograms are applied to the input of several architectures of Convolutional Neural Networks like Inception-v3, Xception, MobileNet and NasNetLarge. An analysis of performance metrics reveals that the subject identification method based on ECG signal and CNNs provides remarkable results. The best accuracy value is 99.5% and is obtained for Inception-v3.
Wagle, S.K., Bazilraj, A.A, Ray, K.P..
2021.
Energy Efficient Security Solution for Attacks on Wireless Sensor Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :313–318.
Wireless Sensor Networks (WSN) are gaining popularity as being the backbone of Cyber physical systems, IOT and various data acquisition from sensors deployed in remote, inaccessible terrains have remote deployment. However due to remote deployment, WSN is an adhoc network of large number of sensors either heli-dropped in inaccessible terrain like volcanoes, Forests, border areas are highly energy deficient and available in large numbers. This makes it the right soup to become vulnerable to various kinds of Security attacks. The lack of energy and resources makes it deprived of developing a robust security code for mitigation of various kinds of attacks. Many attempts have been made to suggest a robust security Protocol. But these consume so much energy, bandwidth, processing power, memory and other resources that the sole purpose of data gathering from inaccessible terrain from energy deprived sensors gets defeated. This paper makes an attempt to study the types of attacks on different layers of WSN and the examine the recent trends in development of various security protocols to mitigate the attacks. Further, we have proposed a simple, lightweight but powerful security protocol known as Simple Sensor Security Protocol (SSSP), which captures the uniqueness of WSN and its isolation from internet to develop an energy efficient security solution.