Biblio
IT industry loses tens of billions of dollars annually from security attacks such as tampering and malicious reverse engineering. Code obfuscation techniques counter such attacks by transforming code into patterns that resist the attacks. None of the current code obfuscation techniques satisfy all the obfuscation effectiveness criteria such as resistance to reverse engineering attacks and state space increase. To address this, we introduce new code patterns that we call nontrivial code clones and propose a new obfuscation scheme that combines nontrivial clones with existing obfuscation techniques to satisfy all the effectiveness criteria. The nontrivial code clones need to be constructed manually, thus adding to the development cost. This cost can be limited by cloning only the code fragments that need protection and by reusing the clones across projects. This makes it worthwhile considering the security risks. In this paper, we present our scheme and illustrate it with a toy example.
Information is increasing quickly, database owners have tendency to outsource their data to an external service provider called Cloud Computing. Using Cloud, clients can remotely store their data without burden of local data storage and maintenance. However, such service provider is untrusted, therefore there are some challenges in data security: integrity, availability and confidentiality. Since integrity and availability are prerequisite conditions of the existence of a system, we mainly focus on them rather than confidentiality. To ensure integrity and availability, researchers have proposed network coding-based POR (Proof of Retrievability) schemes that enable the servers to demonstrate whether the data is retrievable or not. However, most of network coding-based POR schemes are inefficient in data checking and also cannot prevent a common attack in POR: small corruption attack. In this paper, we propose a new network coding-based POR scheme using dispersal code in order to reduce cost in checking phase and also to prevent small corruption attack.
Identity management system has gained significance for any organization today for not only storing details of its employees but securing its sensitive information and safely managing access to its resources. This system being an enterprise based application has time taking deployment process, involving many complex and error prone steps. Also being globally used, its continuous running on servers lead to large carbon emissions. This paper proposes a novel architecture that integrates the Identity management system together with virtual appliance technology to reduce the overall deployment time of the system. It provides an Identity management system as pre-installed, pre-configured and ready to go solution that can be easily deployed even by a common user. The proposed architecture is implemented and the results have shown that there is decrease in deployment time and decrease in number of steps required in previous architecture. The hardware required by the application is also reduced as its deployed on virtual machine monitor platform, which can be installed on already used servers. This contributes to the green computing practices and gives costs benefits for enterprises. Also there is ease of migration of system from one server to another and the enterprises which do not want to depend on third party cloud for security and cost reasons, can easily deploy their identity management system in their own premises.
The notion of trust is considered to be the cornerstone on patient-psychiatrist relationship. Thus, a trustfully background is fundamental requirement for provision of effective Ubiquitous Healthcare (UH) service. In this paper, the issue of Trust Evaluation of UH Providers when register UH environment is addressed. For that purpose a novel trust evaluation method is proposed, based on cloud theory, exploiting User Profile attributes. This theory mimics human thinking, regarding trust evaluation and captures fuzziness and randomness of this uncertain reasoning. Two case studies are investigated through simulation in MATLAB software, in order to verify the effectiveness of this novel method.
Intrusion Detection Systems (IDS) have become a necessity in computer security systems because of the increase in unauthorized accesses and attacks. Intrusion Detection is a major component in computer security systems that can be classified as Host-based Intrusion Detection System (HIDS), which protects a certain host or system and Network-based Intrusion detection system (NIDS), which protects a network of hosts and systems. This paper addresses Probes attacks or reconnaissance attacks, which try to collect any possible relevant information in the network. Network probe attacks have two types: Host Sweep and Port Scan attacks. Host Sweep attacks determine the hosts that exist in the network, while port scan attacks determine the available services that exist in the network. This paper uses an intelligent system to maximize the recognition rate of network attacks by embedding the temporal behavior of the attacks into a TDNN neural network structure. The proposed system consists of five modules: packet capture engine, preprocessor, pattern recognition, classification, and monitoring and alert module. We have tested the system in a real environment where it has shown good capability in detecting attacks. In addition, the system has been tested using DARPA 1998 dataset with 100% recognition rate. In fact, our system can recognize attacks in a constant time.
We consider the problem of communicating information over a network secretly and reliably in the presence of a hidden adversary who can eavesdrop and inject malicious errors. We provide polynomial-time distributed network codes that are information-theoretically rate-optimal for this scenario, improving on the rates achievable in prior work by Ngai Our main contribution shows that as long as the sum of the number of links the adversary can jam (denoted by ZO) and the number of links he can eavesdrop on (denoted by ZI) is less than the network capacity (denoted by C) (i.e., ), our codes can communicate (with vanishingly small error probability) a single bit correctly and without leaking any information to the adversary. We then use this scheme as a module to design codes that allow communication at the source rate of C- ZO when there are no security requirements, and codes that allow communication at the source rate of C- ZO- ZI while keeping the communicated message provably secret from the adversary. Interior nodes are oblivious to the presence of adversaries and perform random linear network coding; only the source and destination need to be tweaked. We also prove that the rate-region obtained is information-theoretically optimal. In proving our results, we correct an error in prior work by a subset of the authors in this paper.
We understand a sociotechnical system as a microsociety in which autonomous parties interact with and about technical objects. We define governance as the administration of such a system by its participants. We develop an approach for governance based on a computational representation of norms. Our approach has the benefit of capturing stakeholder needs precisely while yielding adaptive resource allocation in the face of changes both in stakeholder needs and the environment. In current work, we are extending this approach to tackle some challenges in cybersecurity.
Extended abstract appearing in the IJCAI Journal Abstracts Track
We introduce noncooperatively optimized tolerance (NOT), a game theoretic generalization of highly optimized tolerance (HOT), which we illustrate in the forest fire framework. As the number of players increases, NOT retains features of HOT, such as robustness and self-dissimilar landscapes, but also develops features of self-organized criticality. The system retains considerable robustness even as it becomes fractured, due in part to emergent cooperation between players, and at the same time exhibits increasing resilience against changes in the environment, giving rise to intermediate regimes where the system is robust to a particular distribution of adverse events, yet not very fragile to changes.
Modeling and analyzing security of networked systems is an important problem in the emerging Science of Security and has been under active investigation. In this paper, we propose a new approach towards tackling the problem. Our approach is inspired by the shock model and random environment techniques in the Theory of Reliability, while accommodating security ingredients. To the best of our knowledge, our model is the first that can accommodate a certain degree of adaptiveness of attacks, which substantially weakens the often-made independence and exponential attack inter-arrival time assumptions. The approach leads to a stochastic process model with two security metrics, and we attain some analytic results in terms of the security metrics.