Biblio
Companies analyse large amounts of data on clusters of machines, using big data analytic tools such as Apache Spark and Apache Flink to analyse the data. Big data analytic tools are mainly tested regarding speed and reliability. Efforts about Security and thus authentication are spent only at second glance. In such big data analytic tools, authentication is achieved with the help of the Kerberos protocol that is basically built as authentication on top of big data analytic tools. However, Kerberos is vulnerable to attacks, and it lacks providing high availability when users are all over the world. To improve the authentication, this work presents first an analysis of the authentication in Hadoop and the data analytic tools. Second, we propose a concept to deploy Transport Layer Security (TLS) not only for the security of data transportation but as well for authentication within the big data tools. This is done by establishing the connections using certificates with a short lifetime. The proof of concept is realized in Apache Spark, where Kerberos is replaced by the method proposed. We deploy new short living certificates for authentication that are less vulnerable to abuse. With our approach the requirements of the industry regarding multi-factor authentication and scalability are met.
Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.
Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose "behaviors'' deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3) flexible to be applied on different types of networks, and 4) network anomalies can be detected in real-time. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk.
Machine-to-Machine (M2M) networks being connected to the internet at large, inherit all the cyber-vulnerabilities of the standard Information Technology (IT) systems. Since perfect cyber-security and robustness is an idealistic construct, it is worthwhile to design intrusion detection schemes to quickly detect and mitigate the harmful consequences of cyber-attacks. Volumetric anomaly detection have been popularized due to their low-complexity, but they cannot detect low-volume sophisticated attacks and also suffer from high false-alarm rate. To overcome these limitations, feature-based detection schemes have been studied for IT networks. However these schemes cannot be easily adapted to M2M systems due to the fundamental architectural and functional differences between the M2M and IT systems. In this paper, we propose novel feature-based detection schemes for a general M2M uplink to detect Distributed Denial-of-Service (DDoS) attacks, emergency scenarios and terminal device failures. The detection for DDoS attack and emergency scenarios involves building up a database of legitimate M2M connections during a training phase and then flagging the new M2M connections as anomalies during the evaluation phase. To distinguish between DDoS attack and emergency scenarios that yield similar signatures for anomaly detection schemes, we propose a modified Canberra distance metric. It basically measures the similarity or differences in the characteristics of inter-arrival time epochs for any two anomalous streams. We detect device failures by inspecting for the decrease in active M2M connections over a reasonably large time interval. Lastly using Monte-Carlo simulations, we show that the proposed anomaly detection schemes have high detection performance and low-false alarm rate.
Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.
Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.
Accurate model is very important for the control of nonlinear system. The traditional identification method based on shallow BP network is easy to fall into local optimal solution. In this paper, a modeling method for nonlinear system based on improved Deep Belief Network (DBN) is proposed. Continuous Restricted Boltzmann Machine (CRBM) is used as the first layer of the DBN, so that the network can more effectively deal with the actual data collected from the real systems. Then, the unsupervised training and supervised tuning were combine to improve the accuracy of identification. The simulation results show that the proposed method has a higher identification accuracy. Finally, this improved algorithm is applied to identification of diameter model of silicon single crystal and the simulation results prove its excellent ability of parameters identification.
Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.
In traditional steganographic schemes, RGB three channels payloads are assigned equally in a true color image. In fact, the security of color image steganography relates not only to data-embedding algorithms but also to different payload partition. How to exploit inter-channel correlations to allocate payload for performance enhancement is still an open issue in color image steganography. In this paper, a novel channel-dependent payload partition strategy based on amplifying channel modification probabilities is proposed, so as to adaptively assign the embedding capacity among RGB channels. The modification probabilities of three corresponding pixels in RGB channels are simultaneously increased, and thus the embedding impacts could be clustered, in order to improve the empirical steganographic security against the channel co-occurrences detection. Experimental results show that the new color image steganographic schemes incorporated with the proposed strategy can effectively make the embedding changes concentrated mainly in textured regions, and achieve better performance on resisting the modern color image steganalysis.
The security of image steganography is an important basis for evaluating steganography algorithms. Steganography has recently made great progress in the long-term confrontation with steganalysis. To improve the security of image steganography, steganography must have the ability to resist detection by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information into the content of an image, which unavoidably leaves a trace of the modification that can be detected by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography without embedding (SWE), which does not need to modify the data of the carrier image, appeared to overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a novel image SWE method based on deep convolutional generative adversarial networks. We map the secret information into a noise vector and use the trained generator neural network model to generate the carrier image based on the noise vector. No modification or embedding operations are required during the process of image generation, and the information contained in the image can be extracted successfully by another neural network, called the extractor, after training. The experimental results show that this method has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.
The importance of peer-to-peer (P2P) network overlays produced enormous interest in the research community due to their robustness, scalability, and increase of data availability. P2P networks are overlays of logically connected hosts and other nodes including servers. P2P networks allow users to share their files without the need for any centralized servers. Since P2P networks are largely constructed of end-hosts, they are susceptible to abuse and malicious activity, such as sybil attacks. Impostors perform sybil attacks by assigning nodes multiple addresses, as opposed to a single address, with the goal of degrading network quality. Sybil nodes will spread malicious data and provide bogus responses to requests. To prevent sybil attacks from occurring, a novel defense mechanism is proposed. In the proposed scheme, the DHT key-space is divided and treated in a similar manner to radio frequency allocation incensing. An overlay of trusted nodes is used to detect and handle sybil nodes with the aid of source-destination pairs reporting on each other. The simulation results show that the proposed scheme detects sybil nodes in large sized networks with thousands of interactions.
Distributed denial-of-service (DDoS) attack remains an exceptional security risk, alleviating these digital attacks are for all intents and purposes extremely intense to actualize, particularly when it faces exceptionally well conveyed attacks. The early disclosure of these attacks, through testing, is critical to ensure safety of end-clients and the wide-ranging expensive network resources. With respect to DDoS attacks - its hypothetical establishment, engineering, and calculations of a honeypot have been characterized. At its core, the honeypot consists of an intrusion prevention system (Interruption counteractive action framework) situated in the Internet Service Providers level. The IPSs then create a safety net to protect the hosts by trading chosen movement data. The evaluation of honeypot promotes broad reproductions and an absolute dataset is introduced, indicating honeypot's activity and low overhead. The honeypot anticipates such assaults and mitigates the servers. The prevailing IDS are generally modulated to distinguish known authority level system attacks. This spontaneity makes the honeypot system powerful against uncommon and strange vindictive attacks.
An attack detection scheme is proposed to detect data integrity attacks on sensors in Cyber-Physical Systems (CPSs). A combined fingerprint for sensor and process noise is created during the normal operation of the system. Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern enabling the proposed scheme to detect attacks. To extract the noise (difference between expected and observed value) a representative model of the system is derived. A Kalman filter is used for the purpose of state estimation. By subtracting the state estimates from the real system states, a residual vector is obtained. It is shown that in steady state the residual vector is a function of process and sensor noise. A set of time domain and frequency domain features is extracted from the residual vector. Feature set is provided to a machine learning algorithm to identify the sensor and process. Experiments are performed on two testbeds, a real-world water treatment (SWaT) facility and a water distribution (WADI) testbed. A class of zero-alarm attacks, designed for statistical detectors on SWaT are detected by the proposed scheme. It is shown that a multitude of sensors can be uniquely identified with accuracy higher than 90% based on the noise fingerprint.