Visible to the public Biblio

Found 509 results

Filters: First Letter Of Title is N  [Clear All Filters]
2018-02-27
Lei, H., Singh, C..  2017.  Non-Sequential Monte Carlo Simulation for Cyber-Induced Dependent Failures in Composite Power System Reliability Evaluation. 2017 IEEE Manchester PowerTech. :1–1.

Cyber-induced dependent failures are important to be considered in composite system reliability evaluation. Because of the complexity and dimensionality, Monte Carlo simulation is a preferred method for composite system reliability evaluation. The non-sequential Monte Carlo or sampling generally requires less computational and storage resources than sequential techniques and is generally preferred for large systems where components are independent or only a limited dependency exists. However, cyber-induced events involve dependent failures, making it difficult to use sampling methods. The difficulties of using sampling with dependent failures are discussed and a solution is proposed. The basic idea is to generate a representative state space from which states can be sampled. The probabilities of representative state space provide an approximation of the joint distribution and are generated by a sequential simulation in this paper but it may be possible to find alternative means of achieving this objective. The proposed method preserves the dependent features of cyber-induced events and also improves the efficiency. Although motivated by cyber-induced failures, the technique can be used for other types of dependent failures as well. A comparative study between a purely sequential methodology and the proposed method is presented on an extended Roy Billinton Test System.

2018-02-21
Lim, H., Ni, A., Kim, D., Ko, Y. B..  2017.  Named data networking testbed for scientific data. 2017 2nd International Conference on Computer and Communication Systems (ICCCS). :65–69.

Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.

Kalinin, Maxim, Krundyshev, Vasiliy, Zegzhda, Peter, Belenko, Viacheslav.  2017.  Network Security Architectures for VANET. Proceedings of the 10th International Conference on Security of Information and Networks. :73–79.
In recent years, cyber security oriented research is paying much close attention on Vehicular Adhoc NETworks (VANETs). However, existing vehicular networks do not meet current security requirements. Typically for dynamic networks, maximal decentralization and rapidly changing topology of moving hosts form a number of security issues associated with ensuring access control of hosts, security policy enforcement, and resistance of the routing methods. To solve these problems generally, the paper reviews SDN (software defined networks) based network security architectures of VANET. The following tasks are solved in our work: composing of network security architectures for SDN-VANET (architecture with the central control and shared security servers, decentralized (zoned) architecture, hierarchical architecture); implementation of these architectures in virtual modeling environment; and experimental study of effectiveness of the suggested architectures. With large-scale vehicular networks, architectures with multiple SDN controllers are most effective. In small networks, the architecture with the central control also significantly outperforms the traditional VANET architecture. For the suggested architectures, three control modes are discussed in the paper: central, distributed and hybrid modes. Unlike common architectures, all of the proposed security architectures allow us to establish a security policy in m2m-networks and increase resistance capabilities of self-organizing networks.
Li, T., Wu, L., Zhang, X., Wu, X., Zhou, J., Wang, X..  2017.  A novel transition effect ring oscillator based true random number generator for a security SoC. 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–2.

The transition effect ring oscillator (TERO) based true random number generator (TRNG) was proposed by Varchola and Drutarovsky in 2010. There were several stochastic models for this advanced TRNG based on ring oscillator. This paper proposed an improved TERO based TRNG and implements both on Altera Cyclone series FPGA platform and on a 0.13um CMOS ASIC process. FPGA experimental results show that this balanced TERO TRNG is in good performance as the experimental data results past the national institute of standards and technology (NIST) test in 1M bit/s. The TRNG is feasible for a security SoC.

2018-02-15
Hufstetler, W. A., Ramos, M. J. H., Wang, S..  2017.  NFC Unlock: Secure Two-Factor Computer Authentication Using NFC. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :507–510.

Our project, NFC Unlock, implements a secure multifactor authentication system for computers using Near Field Communication technology. The application is written in C\# with pGina. It implements an NFC authentication which replaces the standard Windows credentials to allow the use of an NFC tag and a passcode to authenticate the user. Unlike the most prevalent multifactor authentication methods, NFC authentication does not require a user wait for an SMS code to type into the computer. A user enters a passcode and scans the NFC tag to log in. In order to prevent the data from being hacked, the system encrypts the NFC tag ID and the passcode with Advanced Encryption Standard. Users can easily register an NFC tag and link it to their computer account. The program also has several extra features including text alerts, record keeping of all login and login attempts, and a user-friendly configuration menu. Initial tests show that the NFC-based multifactor authentication system has the advantage of improved security with a simplified login process.

Han, Z., Yang, L., Liu, Q..  2017.  A Novel Multifactor Two-Server Authentication Scheme under the Mobile Cloud Computing. 2017 International Conference on Networking and Network Applications (NaNA). :341–346.

Because the authentication method based username-password has the disadvantage of easy disclosure and low reliability, and also the excess password management degrades the user experience tremendously, the user is eager to get rid of the bond of the password in order to seek a new way of authentication. Therefore, the multifactor biometrics-based user authentication wins the favor of people with advantages of simplicity, convenience and high reliability, especially in the mobile payment environment. Unfortunately, in the existing scheme, biometric information is stored on the server side. As thus, once the server is hacked by attackers to cause the leakage of the fingerprint information, it will take a deadly threat to the user privacy. Aim at the security problem due to the fingerprint information in the mobile payment environment, we propose a novel multifactor two-server authentication scheme under mobile computing (MTSAS). In the MTSAS, it divides the authentication method and authentication means, in the meanwhile, the user's biometric characteristics cannot leave the user device. And also, MTSAS chooses the different authentication factors depending on the privacy level of the authentication, and then provides the authentication based on the different security levels. BAN logic's result proves that MTSAS has achieved the purpose of authentication, and meets the security requirements. In comparison with other schemes, the analysis shows that the proposed scheme MTSAS not only has the reasonable computational efficiency, but also keeps the superior communication cost.

Zhang, Ren, Preneel, Bart.  2017.  On the Necessity of a Prescribed Block Validity Consensus: Analyzing Bitcoin Unlimited Mining Protocol. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :108–119.

Bitcoin has not only attracted many users but also been considered as a technical breakthrough by academia. However, the expanding potential of Bitcoin is largely untapped due to its limited throughput. The Bitcoin community is now facing its biggest crisis in history as the community splits on how to increase the throughput. Among various proposals, Bitcoin Unlimited recently became the most popular candidate, as it allows miners to collectively decide the block size limit according to the real network capacity. However, the security of BU is heatedly debated and no consensus has been reached as the issue is discussed in different miner incentive models. In this paper, we systematically evaluate BU's security with three incentive models via testing the two major arguments of BU supporters: the block validity consensus is not necessary for BU's security; such consensus would emerge in BU out of economic incentives. Our results invalidate both arguments and therefore disprove BU's security claims. Our paper further contributes to the field by addressing the necessity of a prescribed block validity consensus for cryptocurrencies.

van Do, Thanh, Engelstad, Paal, Feng, Boning, Do, Van Thuan.  2017.  A Near Real Time SMS Grey Traffic Detection. Proceedings of the 6th International Conference on Software and Computer Applications. :244–249.
Lately, mobile operators experience threats from SMS grey routes which are used by fraudsters to evade SMS fees and to deny them millions in revenues. But more serious are the threats to the user's security and privacy and consequently the operator's reputation. Therefore, it is crucial for operators to have adequate solutions to protect both their network and their customers against this kind of fraud. Unfortunately, so far there is no sufficiently efficient countermeasure against grey routes. This paper proposes a near real time SMS grey traffic detection which makes use of Counting Bloom Filters combined with blacklist and whitelist to detect SMS grey traffic on the fly and to block them. The proposed detection has been implemented and proved to be quite efficient. The paper provides also comprehensive explanation of SMS grey routes and the challenges in their detection. The implementation and verification are also described thoroughly.
2018-02-14
Chum, Chi Sing, Zhang, Xiaowen.  2017.  A New Bloom Filter Structure for Searchable Encryption Schemes. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :143–145.
We propose a new Bloom filter structure for searchable encryption schemes in which a large Bloom filter is treated as (replaced with) two smaller ones for the search index. False positive is one inherent drawback of Bloom filter. We formulate the false positive rates for one regular large Bloom filter, and then derive the false positive rate for the two smaller ones. With examples, we show how the new scheme cuts down the false positive rate and the size of Bloom filter to a balanced point that fulfills the user requirements and increases the efficiency of the structure.
2018-01-23
Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.

Aledhari, M., Marhoon, A., Hamad, A., Saeed, F..  2017.  A New Cryptography Algorithm to Protect Cloud-Based Healthcare Services. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :37–43.

The revolution of smart devices has a significant and positive impact on the lives of many people, especially in regard to elements of healthcare. In part, this revolution is attributed to technological advances that enable individuals to wear and use medical devices to monitor their health activities, but remotely. Also, these smart, wearable medical devices assist health care providers in monitoring their patients remotely, thereby enabling physicians to respond quickly in the event of emergencies. An ancillary advantage is that health care costs will be reduced, another benefit that, when paired with prompt medical treatment, indicates significant advances in the contemporary management of health care. However, the competition among manufacturers of these medical devices creates a complexity of small and smart wearable devices such as ECG and EMG. This complexity results in other issues such as patient security, privacy, confidentiality, and identity theft. In this paper, we discuss the design and implementation of a hybrid real-time cryptography algorithm to secure lightweight wearable medical devices. The proposed system is based on an emerging innovative technology between the genomic encryptions and the deterministic chaos method to provide a quick and secure cryptography algorithm for real-time health monitoring that permits for threats to patient confidentiality to be addressed. The proposed algorithm also considers the limitations of memory and size of the wearable health devices. The experimental results and the encryption analysis indicate that the proposed algorithm provides a high level of security for the remote health monitoring system.

2018-01-16
Cvitić, I., Peraković, D., Periša, M., Musa, M..  2017.  Network parameters applicable in detection of infrastructure level DDoS attacks. 2017 25th Telecommunication Forum (℡FOR). :1–4.

Distributed denial of service attacks represent continuous threat to availability of information and communication resources. This research conducted the analysis of relevant scientific literature and synthesize parameters on packet and traffic flow level applicable for detection of infrastructure layer DDoS attacks. It is concluded that packet level detection uses two or more parameters while traffic flow level detection often used only one parameter which makes it more convenient and resource efficient approach in DDoS detection.

Ba-Hutair, M. N., Kamel, I..  2016.  A New Scheme for Protecting the Privacy and Integrity of Spatial Data on the Cloud. 2016 IEEE Second International Conference on Multimedia Big Data (BigMM). :394–397.

As the amount of spatial data gets bigger, organizations realized that it is cheaper and more flexible to keep their data on the Cloud rather than to establish and maintain in-house huge data centers. Though this saves a lot for IT costs, organizations are still concerned about the privacy and security of their data. Encrypting the whole database before uploading it to the Cloud solves the security issue. But querying the database requires downloading and decrypting the data set, which is impractical. In this paper, we propose a new scheme for protecting the privacy and integrity of spatial data stored in the Cloud while being able to execute range queries efficiently. The proposed technique suggests a new index structure to support answering range query over encrypted data set. The proposed indexing scheme is based on the Z-curve. The paper describes a distributed algorithm for answering range queries over spatial data stored on the Cloud. We carried many simulation experiments to measure the performance of the proposed scheme. The experimental results show that the proposed scheme outperforms the most recent schemes by Kim et al. in terms of data redundancy.

2018-01-10
Harini, M., Gowri, K. P., Pavithra, C., Selvarani, M. P..  2017.  A novel security mechanism using hybrid cryptography algorithms. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). :1–4.

Data security is a primary concern for every communication system. Communication becomes an essential tool for any business, education, defense services etc. It is essential to transfer data safe and secure. At present, various cryptography algorithms have been proposed and implemented. Those algorithms are classified into symmetric and asymmetric algorithms based on the number of keys used. Even though several algorithms are used for data security, they are compromise the security at the certain period. Now the idea is to combine the several secure algorithms to provide a highly secure environment for data transmission. The algorithms that are going to be combined are AES symmetric cryptographic algorithm, RSA asymmetric algorithm and MD5 hashing algorithm. With these three algorithms, we can ensure three cryptography primitives confidentiality, authentication and integrity of data.

Chu, Jacqueline, Bryan, Chris, Shih, Min, Ferrer, Leonardo, Ma, Kwan-Liu.  2017.  Navigable Videos for Presenting Scientific Data on Affordable Head-Mounted Displays. Proceedings of the 8th ACM on Multimedia Systems Conference. :250–260.
Immersive, stereoscopic visualization enables scientists to better analyze structural and physical phenomena compared to traditional display mediums. Unfortunately, current head-mounted displays (HMDs) with the high rendering quality necessary for these complex datasets are prohibitively expensive, especially in educational settings where their high cost makes it impractical to buy several devices. To address this problem, we develop two tools: (1) An authoring tool allows domain scientists to generate a set of connected, 360° video paths for traversing between dimensional keyframes in the dataset. (2) A corresponding navigational interface is a video selection and playback tool that can be paired with a low-cost HMD to enable an interactive, non-linear, storytelling experience. We demonstrate the authoring tool's utility by conducting several case studies and assess the navigational interface with a usability study. Results show the potential of our approach in effectively expanding the accessibility of high-quality, immersive visualization to a wider audience using affordable HMDs.
2017-12-28
Tang, H..  2016.  A Network IDS Model Based on Improved Artificial Immune Algorithm. 2016 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :46–50.

The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.

Godfrey, L. B., Gashler, M. S..  2017.  Neural decomposition of time-series data. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :2796–2801.

We present a neural network technique for the analysis and extrapolation of time-series data called Neural Decomposition (ND). Units with a sinusoidal activation function are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with nonperiodic activation functions to capture linear trends and other nonperiodic components. We show how careful weight initialization can be combined with regularization to form a simple model that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a dataset of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international airline passengers, and an unevenly sampled time-series of oxygen isotope measurements from a cave in north India. We find that ND outperforms popular time-series forecasting techniques including LSTM, echo state networks, (S)ARIMA, and SVR with a radial basis function.

2017-12-27
Slimane, N. B., Bouallegue, K., Machhout, M..  2017.  A novel image encryption scheme using chaos, hyper-chaos systems and the secure Hash algorithm SHA-1. 2017 International Conference on Control, Automation and Diagnosis (ICCAD). :141–145.

In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.

Hamad, N., Rahman, M., Islam, S..  2017.  Novel remote authentication protocol using heart-signals with chaos cryptography. 2017 International Conference on Informatics, Health Technology (ICIHT). :1–7.

Entity authentication is one of the fundamental information security properties for secure transactions and communications. The combination of biometrics with cryptography is an emerging topic for authentication protocol design. Among the existing biometrics (e.g., fingerprint, face, iris, voice, heart), the heart-signal contains liveness property of biometric samples. In this paper, a remote entity authentication protocol has been proposed based on the randomness of heart biometrics combined with chaos cryptography. To this end, initial keys are generated for chaotic logistic maps based on the heart-signal. The authentication parameters are generated from the initial keys that can be used for claimants and verifiers to authenticate and verify each other, respectively. In this proposed technique, as each session of communication is different from others, therefore many session-oriented attacks are prevented. Experiments have been conducted on sample heart-signal for remote authentication. The results show that the randomness property of the heart-signal can help to implement one of the famous secure encryption, namely one-time pad encryption.

Pich, R., Chivapreecha, S., Prabnasak, J..  2017.  A new key generator for data encryption using chaos in digital filter. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :87–92.

The presented work of this paper is to propose the implementation of chaotic crypto-system with the new key generator using chaos in digital filter for data encryption and decryption. The chaos in digital filter of the second order system is produced by the coefficients which are initialed in the key generator to produce other new coefficients. Private key system using the initial coefficients value condition and dynamic input as password of 16 characters is to generate the coefficients for crypto-system. In addition, we have tension specifically to propose the solution of data security in lightweight cryptography based on external and internal key in which conducts with the appropriate key sensitivity plus high performance. The chaos in digital filter has functioned as the main major in the system. The experimental results illustrate that the proposed data encryption with new key generator system is the high sensitive system with accuracy key test 99% and can make data more secure with high performance.

Tutueva, A. V., Butusov, D. N., Pesterev, D. O., Belkin, D. A., Ryzhov, N. G..  2017.  Novel normalization technique for chaotic Pseudo-random number generators based on semi-implicit ODE solvers. 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :292–295.

The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.

Hassene, S., Eddine, M. N..  2016.  A new hybrid encryption technique permuting text and image based on hyperchaotic system. 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). :63–68.

This paper proposes a new hybrid technique for combined encryption text and image based on hyperchaos system. Since antiquity, man has continued looking for ways to send messages to his correspondents in order to communicate with them safely. It needed, through successive epochs, both physical and intellectual efforts in order to find an effective and appropriate communication technique. On another note, there is a behavior between the rigid regularity and randomness. This behavior is called chaos. In fact, it is a new field of investigation that is opened along with a new understanding of the frequently misunderstood long effects. The chaotic cryptography is thus born by inclusion of chaos in encryption algorithms. This article is in this particular context. Its objective is to create and implement an encryption algorithm based on a hyperchaotic system. This algorithm is composed of four methods: two for encrypting images and two for encrypting texts. The user chose the type of the input of the encryption (image or text) and as well as of the output. This new algorithm is considered a renovation in the science of cryptology, with the hybrid methods. This research opened a new features.

2017-12-20
Maleki, H., Rahaeimehr, R., Jin, C., Dijk, M. van.  2017.  New clone-detection approach for RFID-based supply chains. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :122–127.

Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless method for detection of counterfeit product injection in supply chains. In order to adequately perform authentication, current RFID monitoring schemes need to either have a persistent online connection between supply chain partners and the back-end database or have a local database on each partner site. A persistent online connection is not guaranteed and local databases on each partner site impose extra cost and security issues. We solve this problem by introducing a new scheme in which a small Non-Volatile Memory (NVM) embedded in RFID tag is used to function as a tiny “encoded local database”. In addition our scheme resists “tag tracing” so that each partner's operation remains private. Our scheme can be implemented in less than 1200 gates satisfying current RFID technology requirements.

2017-12-12
Gao, M., Qu, G..  2017.  A novel approximate computing based security primitive for the Internet of Things. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). :1–4.

The Internet of Things (IoT) has become ubiquitous in our daily life as billions of devices are connected through the Internet infrastructure. However, the rapid increase of IoT devices brings many non-traditional challenges for system design and implementation. In this paper, we focus on the hardware security vulnerabilities and ultra-low power design requirement of IoT devices. We briefly survey the existing design methods to address these issues. Then we propose an approximate computing based information hiding approach that provides security with low power. We demonstrate that this security primitive can be applied for security applications such as digital watermarking, fingerprinting, device authentication, and lightweight encryption.

Jiang, J., Chaczko, Z., Al-Doghman, F., Narantaka, W..  2017.  New LQR Protocols with Intrusion Detection Schemes for IOT Security. 2017 25th International Conference on Systems Engineering (ICSEng). :466–474.

Link quality protocols employ link quality estimators to collect statistics on the wireless link either independently or cooperatively among the sensor nodes. Furthermore, link quality routing protocols for wireless sensor networks may modify an estimator to meet their needs. Link quality estimators are vulnerable against malicious attacks that can exploit them. A malicious node may share false information with its neighboring sensor nodes to affect the computations of their estimation. Consequently, malicious node may behave maliciously such that its neighbors gather incorrect statistics about their wireless links. This paper aims to detect malicious nodes that manipulate the link quality estimator of the routing protocol. In order to accomplish this task, MINTROUTE and CTP routing protocols are selected and updated with intrusion detection schemes (IDSs) for further investigations with other factors. It is proved that these two routing protocols under scrutiny possess inherent susceptibilities, that are capable of interrupting the link quality calculations. Malicious nodes that abuse such vulnerabilities can be registered through operational detection mechanisms. The overall performance of the new LQR protocol with IDSs features is experimented, validated and represented via the detection rates and false alarm rates.