Biblio
Filters: First Letter Of Title is P [Clear All Filters]
The Potential of New Data Sources in a Data-Driven Transportation, Operation, Management and Assessment System (TOMAS). 2020 IEEE Conference on Technologies for Sustainability (SusTech). :1–8.
.
2020. We present our journey in constructing the first integrated data warehouse for Philippine transportation research in the hopes of developing a Transportation Decision Support System for impact studies and policy making. We share how we collected data from diverse sources, processed them into a homogeneous format and applied them to our multimodal platform. We also list the challenges we encountered, including bureaucratic delays, data privacy concerns, lack of software, and overlapping datasets. The data warehouse shall serve as a public resource for researchers and professionals, and for government officials to make better-informed policies. The warehouse will also function within our multi-modal platform for measurement, modelling, and visualization of road transportation. This work is our contribution to improve the transportation situation in the Philippines, both in the local and national levels, to boost our economy and overall quality of life.
Provably Robust Decisions based on Potentially Malicious Sources of Information. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :411–424.
.
2020. Sometimes a security-critical decision must be made using information provided by peers. Think of routing messages, user reports, sensor data, navigational information, blockchain updates. Attackers manifest as peers that strategically report fake information. Trust models use the provided information, and attempt to suggest the correct decision. A model that appears accurate by empirical evaluation of attacks may still be susceptible to manipulation. For a security-critical decision, it is important to take the entire attack space into account. Therefore, we define the property of robustness: the probability of deciding correctly, regardless of what information attackers provide. We introduce the notion of realisations of honesty, which allow us to bypass reasoning about specific feedback. We present two schemes that are optimally robust under the right assumptions. The “majority-rule” principle is a special case of the other scheme which is more general, named “most plausible realisations”.
Petri Nets Based Verification of Epistemic Logic and Its Application on Protocols of Privacy and Security. 2020 IEEE World Congress on Services (SERVICES). :25–28.
.
2020. Epistemic logic can specify many design requirements of privacy and security of multi-agent systems (MAS). The existing model checkers of epistemic logic use some programming languages to describe MAS, induce Kripke models as the behavioral representation of MAS, apply Ordered Binary Decision Diagrams (OBDD) to encode Kripke models to solve their state explosion problem and verify epistemic logic based on the encoded Kripke models. However, these programming languages are usually non-intuitive. More seriously, their OBDD-based model checking processes are often time-consuming due to their dynamic variable ordering for OBDD. Therefore, we define Knowledge-oriented Petri Nets (KPN) to intuitively describe MAS, induce similar reachability graphs as the behavioral representation of KPN, apply OBDD to encode all reachable states, and finally verify epistemic logic. Although we also use OBDD, we adopt a heuristic method for the computation of a static variable order instead of dynamic variable ordering. More importantly, while verifying an epistemic formula, we dynamically generate its needed similar relations, which makes our model checking process much more efficient. In this paper, we introduce our work.
Privacy Policy in Online Social Network with Targeted Advertising Business. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :934–943.
.
2020. In an online social network, users exhibit personal information to enjoy social interaction. The social network provider (SNP) exploits users' information for revenue generation through targeted advertising. The SNP can present ads to proper users efficiently. Therefore, an advertiser is more willing to pay for targeted advertising. However, the over-exploitation of users' information would invade users' privacy, which would negatively impact users' social activeness. Motivated by this, we study the optimal privacy policy of the SNP with targeted advertising business. We characterize the privacy policy in terms of the fraction of users' information that the provider should exploit, and formulate the interactions among users, advertiser, and SNP as a three-stage Stackelberg game. By carefully leveraging supermodularity property, we reveal from the equilibrium analysis that higher information exploitation will discourage users from exhibiting information, lowering the overall amount of exploited information and harming advertising revenue. We further characterize the optimal privacy policy based on the connection between users' information levels and privacy policy. Numerical results reveal some useful insights that the optimal policy can well balance the users' trade-off between social benefit and privacy loss.
Privacy Policy – ``I Agree''⁈ – Do Alternatives to Text-Based Policies Increase the Awareness of the Users? 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.
.
2020. Since GDPR was introduced, there is a reinforcement of the fact that users must give their consent before their personal data can be managed by any website. However, many studies have demonstrated that users often skip these policies and click the "I agree" button to continue browsing, being unaware of what the consent they gave was about, hence defeating the purpose of GDPR. This paper investigates if different ways of presenting users the privacy policy can change this behaviour and can lead to an increased awareness of the user in relation to what the user agrees with. Three different types of policies were used in the study: a full-text policy, a so-called usable policy, and a video-based policy. Results demonstrated that the type of policy has a direct influence on the user awareness and user satisfaction. The two alternatives to the text-based policy lead to a significant increase of user awareness in relation to the content of the policy and to a significant increase in the user satisfaction in relation to the usability of the policy.
Privacy Policies' Readability Analysis of Contemporary Free Healthcare Apps. 2020 14th International Conference on Open Source Systems and Technologies (ICOSST). :1–7.
.
2020. mHealth apps have a vital role in facilitation of human health management. Users have to enter sensitive health related information in these apps to fully utilize their functionality. Unauthorized sharing of sensitive health information is undesirable by the users. mHealth apps also collect data other than that required for their functionality like surfing behavior of a user or hardware details of devices used. mHealth software and their developers also share such data with third parties for reasons other than medical support provision to the user, like advertisements of medicine and health insurance plans. Existence of a comprehensive and easy to understand data privacy policy, on user data acquisition, sharing and management is a salient requirement of modern user privacy protection demands. Readability is one parameter by which ease of understanding of privacy policy is determined. In this research, privacy policies of 27 free Android, medical apps are analyzed. Apps having user rating of 4.0 and downloads of 1 Million or more are included in data set of this research.RGL, Flesch-Kincaid Reading Grade Level, SMOG, Gunning Fox, Word Count, and Flesch Reading Ease of privacy policies are calculated. Average Reading Grade Level of privacy policies is 8.5. It is slightly greater than average adult RGL in the US. Free mHealth apps have a large number of users in other, less educated parts of the World. Privacy policies with an average RGL of 8.5 may be difficult to comprehend in less educated populations.
Partial Decision Overrides in a Declarative Policy Framework. 2020 IEEE 14th International Conference on Semantic Computing (ICSC). :271–278.
.
2020. The ability to specify various policies with different overriding criteria allows for complex sets of sharing policies. This is particularly useful in situations in which data privacy depends on various properties of the data, and complex policies are needed to express the conditions under which data is protected. However, if overriding policy decisions constrain the affected data, decisions from overridden policies should not be suppressed completely, because they can still apply to subsets of the affected data. This article describes how a privacy policy framework can be extended with a mechanism to partially override decisions based on specified constraints. Our solution automatically generates complementary sets of decisions for both the overridden and the complementary, non-overridden subsets of the data, and thus, provides a means to specify a complex policies tailored to specific properties of the protected data.
PrivacyCheck's Machine Learning to Digest Privacy Policies: Competitor Analysis and Usage Patterns. 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). :291–298.
.
2020. Online privacy policies are lengthy and hard to comprehend. To address this problem, researchers have utilized machine learning (ML) to devise tools that automatically summarize online privacy policies for web users. One such tool is our free and publicly available browser extension, PrivacyCheck. In this paper, we enhance PrivacyCheck by adding a competitor analysis component-a part of PrivacyCheck that recommends other organizations in the same market sector with better privacy policies. We also monitored the usage patterns of about a thousand actual PrivacyCheck users, the first work to track the usage and traffic of an ML-based privacy analysis tool. Results show: (1) there is a good number of privacy policy URLs checked repeatedly by the user base; (2) the users are particularly interested in privacy policies of software services; and (3) PrivacyCheck increased the number of times a user consults privacy policies by 80%. Our work demonstrates the potential of ML-based privacy analysis tools and also sheds light on how these tools are used in practice to give users actionable knowledge they can use to pro-actively protect their privacy.
On Providing Information Security for Decentralized Databases. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
.
2020. The paper discusses a prototype of a database, which can be used for operation in a decentralized mode for an information system. In this project, the focus is on creation of a data structure model that provides flexibility of business processes. The research is based on the development of a model for decentralized access rights distribution by including users in groups where they are assigned similar roles using consensus of other group members. This paper summarizes the main technologies that were used to ensure information security of the decentralized storage, the mechanisms for fixing access rights to an object access (the minimum entity of the system), describes a process of the data access control at the role level and an algorithm for managing the consensus for applying changes.
Pattern-Based Approach to Modelling and Verifying System Security. 2020 IEEE International Conference on Service Oriented Systems Engineering (SOSE). :92–102.
.
2020. Security is one of the most important problems in the engineering of online service-oriented systems. The current best practice in security design is a pattern-oriented approach. A large number of security design patterns have been identified, categorised and documented in the literature. The design of a security solution for a system starts with identification of security requirements and selection of appropriate security design patterns; these are then composed together. It is crucial to verify that the composition of security design patterns is valid in the sense that it preserves the features, semantics and soundness of the patterns and correct in the sense that the security requirements are met by the design. This paper proposes a methodology that employs the algebraic specification language SOFIA to specify security design patterns and their compositions. The specifications are then translated into the Alloy formalism and their validity and correctness are verified using the Alloy model checker. A tool that translates SOFIA into Alloy is presented. A case study with the method and the tool is also reported.
A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
.
2020. In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
pcSVF: An Evaluation of Side-Channel Vulnerability of Port Contention. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1813–1819.
.
2020. The threats from side-channel attacks to modern processors has become a serious problem, especially under the enhancement of the microarchitecture characteristics with multicore and resource sharing. Therefore, the research and measurement of the vulnerability of the side-channel attack of the system is of great significance for computer designers. Most of the current evaluation methods proposed by researchers are only for typical cache side-channel attacks. In this paper, we propose a method to measure systems' vulnerability to side-channel attacks caused by port contention called pcSVF. We collected the traces of the victim and attacker and computed the correlation coefficient between them, thus we can measure the vulnerability of the system against side-channel attack. Then we analyzed the effectiveness of the method through the results under different system defense schemes.
Partitioning Analysis in Temporal Decomposition for Security-Constrained Economic Dispatch. 2020 IEEE Texas Power and Energy Conference (TPEC). :1–6.
.
2020. Distributed optimization algorithms are proposed to, potentially, reduce the computational time of large-scale optimization problems, such as security-constrained economic dispatch (SCED). While various geographical decomposition strategies have been presented in the literature, we proposed a temporal decomposition strategy to divide the SCED problem over the considered scheduling horizon. The proposed algorithm breaks SCED over the scheduling time and takes advantage of parallel computing using multi-core machines. In this paper, we investigate how to partition the overall time horizon. We study the effect of the number of partitions (i.e., SCED subproblems) on the overall performance of the distributed coordination algorithm and the effect of partitioning time interval on the optimal solution. In addition, the impact of system loading condition and ramp limits of the generating units on the number of iterations and solution time are analyzed. The results show that by increasing the number of subproblems, the computational burden of each subproblem is reduced, but more shared variables and constraints need to be modeled between the subproblems. This can result in increasing the total number of iterations and consequently the solution time. Moreover, since the load behavior affects the active ramping between the subproblems, the breaking hour determines the difference between shared variables. Hence, the optimal number of subproblems is problem dependent. A 3-bus and the IEEE 118-bus system are selected to analyze the effect of the number of partitions.
Protocols Over Things: A Decentralized Programming Model for the Internet of Things. 53:60–68.
.
2020. Current programming models for developing Internet of Things (IoT) applications are logically centralized and ill-suited for most IoT applications. We contribute Protocols over Things, a decentralized programming model that represents an IoT application via a protocol between the parties involved and provides improved performance over network-level delivery guarantees.
PUFGAN: Embracing a Self-Adversarial Agent for Building a Defensible Edge Security Architecture. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :904–913.
.
2020. In the era of edge computing and Artificial Intelligence (AI), securing billions of edge devices within a network against intelligent attacks is crucial. We propose PUFGAN, an innovative machine learning attack-proof security architecture, by embedding a self-adversarial agent within a device fingerprint- based security primitive, public PUF (PPUF) known for its strong fingerprint-driven cryptography. The self-adversarial agent is implemented using Generative Adversarial Networks (GANs). The agent attempts to self-attack the system based on two GAN variants, vanilla GAN and conditional GAN. By turning the attacking quality through generating realistic secret keys used in the PPUF primitive into system vulnerability, the security architecture is able to monitor its internal vulnerability. If the vulnerability level reaches at a specific value, PUFGAN allows the system to restructure its underlying security primitive via feedback to the PPUF hardware, maintaining security entropy at as high a level as possible. We evaluated PUFGAN on three different machine environments: Google Colab, a desktop PC, and a Raspberry Pi 2, using a real-world PPUF dataset. Extensive experiments demonstrated that even a strong device fingerprint security primitive can become vulnerable, necessitating active restructuring of the current primitive, making the system resilient against extreme attacking environments.
PEX: Privacy-Preserved, Multi-Tier Exchange Framework for Cross Platform Virtual Assets Trading. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–4.
.
2020. In traditional virtual asset trading market, several risks, e.g. scams, cheating users, and market reach, have been pushed to users (sellers/buyers). Users need to decide who to trust; otherwise, no business. This fact impedes the growth of virtual asset trading market. In the past few years, several virtual asset marketplaces have embraced blockchain and smart contract technology to alleviate such risks, while trying to address privacy and scalability issues. To attain both speed and non-repudiation property for all transactions, existing blockchain-based exchange systems still cannot fully accomplish. In real-life trading, users use traditional contract to provide non-repudiation to achieve accountability in all committed transactions, so-called thorough non-repudiation. This is essential when dispute happens. To achieve similar thorough non-repudiation as well as privacy and scalability, we propose PEX, Privacy-preserved, multi-tier EXchange framework for cross platform virtual assets trading. PEX creates a smart contract for each virtual asset trading request. The key to address the challenges is to devise two-level distributed ledgers with two different types of quorums where one is for public knowledge in a global ledger and the other is for confidential information in a private ledger. A private quorum is formed to process individual smart contract and record the transactions in a private distributed ledger in order to maintain privacy. Smart contract execution checkpoints will be continuously written in a global ledger to strengthen thorough non-repudiation. PEX smart contract can be executed in parallel to promote scalability. PEX is also equipped with our reputation-based network to track contribution and discourage malicious behavior nodes or users, building healthy virtual asset ecosystem.
Performance Evaluation of a Lightweight IoT Authentication Protocol. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
.
2020. Ensuring security to IoT devices is important in order to provide privacy and quality of services. Proposing a security solution is considered an important step towards achieving protection, however, proving the soundness of the solution is also crucial. In this paper, we propose a methodology for the performance evaluation of lightweight IoT-based authentication protocols based on execution time. Then, a formal verification test is conducted on a lightweight protocol proposed in the literature. The formal verification test conducted with Scyther tool proofs that the model provides mutual authentication, authorization, integrity, confidentiality, non-repudiation, and accountability. The protocol also was proven to provide protection from various attacks.
Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
.
2020. In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
Presenting IoT Security based on Cryptographic Practices in Data Link Layer in Power Generation Sector. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1085—1088.
.
2020. With increasing improvements in different areas, Internet control has been making prominent impacts in almost all areas of technology that has resulted in reasonable advances in every discrete field and therefore the industries too are proceeding to the field of IoT (Internet of Things), in which the communication among heterogeneous equipments is via Internet broadly. So imparting these advances of technology in the Power Station Plant sectors i.e. the power plants will be remotely controlled additional to remote monitoring, with no corporal place as a factor for controlling or monitoring. But imparting this technology the security factor needs to be considered as a basic and such methods need to be put into practice that the communication in such networks or control systems is defended against any third party interventions while the data is being transferred from one device to the other device through the internet (Unrestricted Channel). The paper puts forward exercising RSA,DES and AES encrypting schemes for the purpose of data encryption at the Data Link Layer i.e. before it is transmitted to the other device through Internet and as a result of this the security constraints are maintained. The records put to use have been supplied by NTPC, Dadri, India plus simulation part was executed employing MATLAB.
Post-Quantum Security of Messaging Protocols: Analysis of Double Ratcheting Algorithm. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :2041—2044.
.
2020. Development in the area of quantum technologies led to the appearance of first quantum computers. The threat of using a quantum computer for cryptanalysis requires wide implementing post-quantum security in computing algorithms and communication protocols. We evaluate the computational power of some existing quantum computers to illustrate the relevance of research in post-quantum security. One of the best ways to test post-quantum protocols is to embed them into some non-critical but widely-used sphere. Secure messaging is an excellent example of such an application. In the paper, we analyze the post-quantum security of well-known messaging specification Signal, which is considered to have high-security properties. The core of Signal specification is the Double Ratchet protocol. We notice and explain why it is not a post-quantum secure scheme. After that, we suggest some possible ways to improve the security features of Signal specification.
Physical-Layer Cooperative Key Generation with Correlated Eavesdropping Channels in IoT. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :29—36.
.
2020. With a massive amount of wireless sensor nodes in Internet of Things (IoT), it is difficult to establish key distribution and management mechanism for traditional encryption technology. Alternatively, the physical layer key generation technology is promising to implement in IoT, since it is based on the principle of information-theoretical security and has the advantage of low complexity. Most existing key generation schemes assume that eavesdropping channels are independent of legitimate channels, which may not be practical especially when eavesdropper nodes are near to legitimate nodes. However, this paper investigates key generation problems for a multi-relay wireless network in IoT, where the correlation between eavesdropping and legitimate channels are considered. Key generation schemes are proposed for both non-colluding and partially colluding eavesdroppers situations. The main idea is to divide the key agreement process into three phases: 1) we first generate a secret key by exploiting the difference between the random channels associated with each relay node and the eavesdropping channels; 2) another key is generated by integrating the residual common randomness associated with each relay pair; 3) the two keys generated in the first two phases are concatenated into the final key. The secrecy key performance of the proposed key generation schemes is also derived with closed-forms.
Phosphor Based White LED Driver by Taking Advantage on the Remanence Effect. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). :265–269.
.
2020. This paper presents the development of a control circuit to enhance the performances of LED lamps. In this direction, a comparison between the luminous intensity of normal LED based lamps and mid-power ones, for both continuous and switching conditions has been made. The already well know control technologies were analyzed and a study was conducted to increase the lighting performances by rising the operating frequency and magnifying the contribution of remanence effect and thus increasing the efficiency of the light source. To achieve this, in the first stage of the project the power and control circuits have been modeled, related to desired parameters and tested in simulation software. In the second stage, the proposed circuit was implemented by functional blocks and in the last stage, tests were made on the circuit and on light sources in order to process the results. The power consumption has been decreased nearly to a half of it and the luminous flux raised with 15% due to overcurrent and remanence effect that we used.
A Practical Defense against Attribute Inference Attacks in Session-based Recommendations. 2020 IEEE International Conference on Web Services (ICWS). :355–363.
.
2020. When users in various web and mobile applications enjoy the convenience of recommendation systems, they are vulnerable to attribute inference attacks. The accumulating online behaviors of users (e.g., clicks, searches, ratings) naturally brings out user preferences, and poses an inevitable threat of privacy that adversaries can infer one's private profiles (e.g., gender, sexual orientation, political view) with AI-based algorithms. Existing defense methods assume the existence of a trusted third party, rely on computationally intractable algorithms, or have impact on recommendation utility. These imperfections make them impractical for privacy preservation in real-life scenarios. In this work, we introduce BiasBooster, a practical proactive defense method based on behavior segmentation, to protect user privacy against attribute inference attacks from user behaviors, while retaining recommendation utility with a heuristic recommendation aggregation module. BiasBooster is a user-centric approach from client side, which proactively divides a user's behaviors into weakly related segments and perform them with several dummy identities, then aggregates real-time recommendations for user from different dummy identities. We estimate its effectiveness of preservation on both privacy and recommendation utility through extensive evaluations on two real-world datasets. A Chrome extension is conducted to demonstrate the feasibility of applying BiasBooster in real world. Experimental results show that compared to existing defenses, BiasBooster substantially reduces the averaged accuracy of attribute inference attacks, with minor utility loss of recommendations.
PMAC++: Incremental MAC Scheme Adaptable to Lightweight Block Ciphers. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1—4.
.
2020. This paper presents a new incremental parallelizable message authentication code (MAC) scheme adaptable to lightweight block ciphers for memory integrity verification. The highlight of the proposed scheme is to achieve both incremental update capability and sufficient security bound with lightweight block ciphers, which is a novel feature. We extend the conventional parallelizable MAC to realize the incremental update capability while keeping the original security bound. We prove that a comparable security bound can be obtained even if this change is incorporated. We also present a hardware architecture for the proposed MAC scheme with lightweight block ciphers and demonstrate the effectiveness through FPGA implementation. The evaluation results indicate that the proposed MAC hardware achieves 3.4 times improvement in the latency-area product for the tag update compared with the conventional MAC.
Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :699—708.
.
2020. The solution of using existing WiFi devices for measurement and maintenance, and establishing a WiFi fingerprint database for precise localization has become a popular method for indoor localization. The traditional WiFi fingerprint privacy protection scheme increases the calculation amount of the client, but cannot completely protect the security of the client and the fingerprint database. In this paper, we make use of WiFi devices to present a Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization PPWFL. In PPWFL, the localization server establishes a pre-partition in the fingerprint database through the E-M clustering algorithm, we divide the entire fingerprint database into several partitions. The server uses WiFi fingerprint entries with partitions as training data and trains a machine learning model. This model can accurately predict the client's partition based on fingerprint entries. The client uses the trained machine learning model to obtain its partition location accurately, picks up WiFi fingerprint entries in its partition, and calculates its geographic location with the localization server through secure multi-party computing. Compared with the traditional solution, our solution only uses the WiFi fingerprint entries in the client's partition rather than the entire fingerprint database. PPWFL can reduce not only unnecessary calculations but also avoid accidental errors (Unexpected errors in fingerprint similarity between non-adjacent locations due to multipath effects of electromagnetic waves during the propagation of complex indoor environments) in fingerprint distance calculation. In particular, due to the use of Secure Multi-Party Computation, most of the calculations are performed in the local offline phase, the client only exchanges data with the localization server during the distance calculation phase. No additional equipment is needed; our solution uses only existing WiFi devices in the building to achieve fast localization based on privacy protection. We prove that PPWFL is secure under the honest but curious attacker. Experiments show that PPWFL achieves efficiency and accuracy than the traditional WiFi fingerprint localization scheme.