Visible to the public Biblio

Found 1171 results

Filters: First Letter Of Title is P  [Clear All Filters]
2022-06-14
Pradel, Gaëtan, Mitchell, Chris.  2021.  Privacy-Preserving Biometric Matching Using Homomorphic Encryption. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :494–505.
Biometric matching involves storing and processing sensitive user information. Maintaining the privacy of this data is thus a major challenge, and homomorphic encryption offers a possible solution. We propose a privacy-preserving biometrics-based authentication protocol based on fully homomorphic en-cryption, where the biometric sample for a user is gathered by a local device but matched against a biometric template by a remote server operating solely on encrypted data. The design ensures that 1) the user's sensitive biometric data remains private, and 2) the user and client device are securely authenticated to the server. A proof-of-concept implementation building on the TFHE library is also presented, which includes the underlying basic operations needed to execute the biometric matching. Performance results from the implementation show how complex it is to make FHE practical in this context, but it appears that, with implementation optimisations and improvements, the protocol could be used for real-world applications.
2022-06-09
Chandrakar, Ila, Hulipalled, Vishwanath R.  2021.  Privacy Preserving Big Data mining using Pseudonymization and Homomorphic Encryption. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Today’s data is so huge so it’s referred to as “Big data.” Such data now exceeds petabytes, and hence businesses have begun to store it in the cloud. Because the cloud is a third party, data must be secured before being uploaded to the cloud in such a way that cloud mining may be performed on protected data, as desired by the organization. Homomorphic encryption permits mining and analysis of encrypted data, hence it is used in the proposed work to encrypt original data on the data owner’s site. Since, homomorphic encryption is a complicated encryption, it takes a long time to encrypt, causing performance to suffer. So, in this paper, we used Hadoop to implement homomorphic encryption, which splits data across nodes in a Hadoop cluster to execute parallel algorithm and provides greater privacy and performance than previous approaches. It also enables for data mining in encrypted form, ensuring that the cloud never sees the original data during mining.
Palit, Shekhar, Wortman, Kevin A..  2021.  Perfect Tabular Hashing in Pseudolinear Time. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0228–0232.
We present an algorithm for generating perfect tabulation hashing functions by reduction to Boolean satisfaction (SAT). Tabulation hashing is a high-performance family of hash functions for hash tables that involves computing the XOR of random lookup tables. Given n keys of word size W, we show how to compute a perfect hash function in O(nW) worst-case time. This is competitive with other perfect hashing methods, and the resultant hash functions are simple and performant.
Yu, Siyu, Chen, Ningjiang, Liang, Birui.  2021.  Predicting gray fault based on context graph in container-based cloud. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :224–234.
Distributed Container-based cloud system has the advantages of rapid deployment, efficient virtualization, simplified configuration, and well-scalability. However, good scalability may slow down container-based cloud because it is more vulnerable to gray faults. As a new fault model similar with fail-slow and limping, gray fault has so many root causes that current studies focus only on a certain type of fault are not sufficient. And unlike traditional cloud, container is a black box provided by service providers, making it difficult for traditional API intrusion-based diagnosis methods to implement. A better approach should shield low-level causes from high-level processing. A Gray Fault Prediction Strategy based on Context Graph is proposed according to the correlation between gray faults and application scenarios. From historical data, the performance metrics related to how above context evolve to fault scenarios are established, and scenarios represented by corresponding data are stored in a graph. A scenario will be predicted as a fault scenario, if its isomorphic scenario is found in the graph. The experimental results show that the success rate of prediction is stable at more than 90%, and it is verified the overhead is optimized well.
2022-06-08
Ong, Ding Sheng, Seng Chan, Chee, Ng, Kam Woh, Fan, Lixin, Yang, Qiang.  2021.  Protecting Intellectual Property of Generative Adversarial Networks from Ambiguity Attacks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3629–3638.
Ever since Machine Learning as a Service emerges as a viable business that utilizes deep learning models to generate lucrative revenue, Intellectual Property Right (IPR) has become a major concern because these deep learning models can easily be replicated, shared, and re-distributed by any unauthorized third parties. To the best of our knowledge, one of the prominent deep learning models - Generative Adversarial Networks (GANs) which has been widely used to create photorealistic image are totally unprotected despite the existence of pioneering IPR protection methodology for Convolutional Neural Networks (CNNs). This paper therefore presents a complete protection framework in both black-box and white-box settings to enforce IPR protection on GANs. Empirically, we show that the proposed method does not compromise the original GANs performance (i.e. image generation, image super-resolution, style transfer), and at the same time, it is able to withstand both removal and ambiguity attacks against embedded watermarks. Codes are available at https://github.com/dingsheng-ong/ipr-gan.
Di Francesco Maesa, Damiano, Tietze, Frank, Theye, Julius.  2021.  Putting Trust back in IP Licensing: DLT Smart Licenses for the Internet of Things. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
Our proposal aims to help solving a trust problem between licensors and licensees that occurs during the active life of license agreements. We particularly focus on licensing of proprietary intellectual property (IP) that is embedded in Internet of Things (IoT) devices and services (e.g. patented technologies). To achieve this we propose to encode the logic of license agreements into smart licenses (SL). We define a SL as a `digital twin' of a licensing contract, i.e. one or more smart contracts that represent the full or relevant parts of a licensing agreement in machine readable and executable code. As SL are self enforcing, the royalty computation and execution of payments can be fully automated in a tamper free and trustworthy way. This of course, requires to employ a Distributed Ledger Technology (DLT). Such an Automated Licensing Payment System (ALPS) can thus automate an established business process and solve a longstanding trust issue in licensing markets. It renders traditional costly audits obsolete, lowers entry barriers for those who want to participate in licensing markets, and enables novel business models too complex with traditional approaches.
2022-06-06
Li, Qiang, Song, Jinke, Tan, Dawei, Wang, Haining, Liu, Jiqiang.  2021.  PDGraph: A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :161–173.
The reuse of libraries in software development has become prevalent for improving development efficiency and software quality. However, security vulnerabilities of reused libraries propagated through software project dependency pose a severe security threat, but they have not yet been well studied. In this paper, we present the first large-scale empirical study of project dependencies with respect to security vulnerabilities. We developed PDGraph, an innovative approach for analyzing publicly known security vulnerabilities among numerous project dependencies, which provides a new perspective for assessing security risks in the wild. As a large-scale software collection in dependency, we find 337,415 projects and 1,385,338 dependency relations. In particular, PDGraph generates a project dependency graph, where each node is a project, and each edge indicates a dependency relationship. We conducted experiments to validate the efficacy of PDGraph and characterized its features for security analysis. We revealed that 1,014 projects have publicly disclosed vulnerabilities, and more than 67,806 projects are directly dependent on them. Among these, 42,441 projects still manifest 67,581 insecure dependency relationships, indicating that they are built on vulnerable versions of reused libraries even though their vulnerabilities are publicly known. During our eight-month observation period, only 1,266 insecure edges were fixed, and corresponding vulnerable libraries were updated to secure versions. Furthermore, we uncovered four underlying dependency risks that can significantly reduce the difficulty of compromising systems. We conducted a quantitative analysis of dependency risks on the PDGraph.
2022-05-24
Nakamura, Ryo, Kamiyama, Noriaki.  2021.  Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
Boulemtafes, Amine, Derhab, Abdelouahid, Ali Braham, Nassim Ait, Challal, Yacine.  2021.  PReDIHERO – Privacy-Preserving Remote Deep Learning Inference based on Homomorphic Encryption and Reversible Obfuscation for Enhanced Client-side Overhead in Pervasive Health Monitoring. 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA). :1–8.
Homomorphic Encryption is one of the most promising techniques to deal with privacy concerns, which is raised by remote deep learning paradigm, and maintain high classification accuracy. However, homomorphic encryption-based solutions are characterized by high overhead in terms of both computation and communication, which limits their adoption in pervasive health monitoring applications with constrained client-side devices. In this paper, we propose PReDIHERO, an improved privacy-preserving solution for remote deep learning inferences based on homomorphic encryption. The proposed solution applies a reversible obfuscation technique that successfully protects sensitive information, and enhances the client-side overhead compared to the conventional homomorphic encryption approach. The solution tackles three main heavyweight client-side tasks, namely, encryption and transmission of private data, refreshing encrypted data, and outsourcing computation of activation functions. The efficiency of the client-side is evaluated on a healthcare dataset and compared to a conventional homomorphic encryption approach. The evaluation results show that PReDIHERO requires increasingly less time and storage in comparison to conventional solutions when inferences are requested. At two hundreds inferences, the improvement ratio could reach more than 30 times in terms of computation overhead, and more than 8 times in terms of communication overhead. The same behavior is observed in sequential data and batch inferences, as we record an improvement ratio of more than 100 times in terms of computation overhead, and more than 20 times in terms of communication overhead.
2022-05-23
Hyodo, Yasuhide, Sugai, Chihiro, Suzuki, Junya, Takahashi, Masafumi, Koizumi, Masahiko, Tomura, Asako, Mitsufuji, Yuki, Komoriya, Yota.  2021.  Psychophysiological Effect of Immersive Spatial Audio Experience Enhanced Using Sound Field Synthesis. 2021 9th International Conference on Affective Computing and Intelligent Interaction (ACII). :1–8.
Recent advancements of spatial audio technologies to enhance human’s emotional and immersive experiences are gathering attention. Many studies are clarifying the neural mechanisms of acoustic spatial perception; however, they are limited to the evaluation of mechanisms using basic sound stimuli. Therefore, it remains challenging to evaluate the experience of actual music contents and to verify the effects of higher-order neurophysiological responses including a sense of immersive and realistic experience. To investigate the effects of spatial audio experience, we verified the psychophysiological responses of immersive spatial audio experience using sound field synthesis (SFS) technology. Specifically, we evaluated alpha power as the central nervous system activity, heart rate/heart rate variability and skin conductance as the autonomic nervous system activity during an acoustic experience of an actual music content by comparing stereo and SFS conditions. As a result, statistically significant differences (p \textbackslashtextless 0.05) were detected in the changes in alpha wave power, high frequency wave power of heart rate variability (HF), and skin conductance level (SCL) among the conditions. The results of the SFS condition showed enhanced the changes in alpha power in the frontal and parietal regions, suggesting enhancement of emotional experience. The results of the SFS condition also suggested that close objects are grouped and perceived on the basis of the spatial proximity of sounds in the presence of multiple sound sources. It is demonstrating that the potential use of SFS technology can enhance emotional and immersive experiences by spatial acoustic expression.
2022-05-20
Ravi, Prasanna, Chattopadhyay, Anupam, Bhasin, Shivam.  2021.  Practical Side-Channel and Fault Attacks on Lattice-Based Cryptography. 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC). :1–2.
The impending threat of large-scale quantum computers to classical RSA and ECC-based public-key cryptographic schemes prompted NIST to initiate a global level standardization process for post-quantum cryptography. This process which started in 2017 with 69 submissions is currently in its third and final round with seven main candidates and eight alternate candidates, out of which seven (7) out of the fifteen (15) candidates are schemes based on hard problems over structured lattices, known as lattice-based cryptographic schemes. Among the various parameters such as theoretical post-quantum (PQ) security guarantees, implementation cost and performance, resistance against physical attacks such as Side-Channel Analysis (SCA) and Fault Injection Analysis (FIA) has also emerged as an important criterion for standardization in the final round [1]. This is especially relevant for adoption of PQC in embedded devices, which are most likely used in environments where an attacker can have unimpeded physical access to the device.
Choi, Changhee, Shin, Sunguk, Shin, Chanho.  2021.  Performance evaluation method of cyber attack behaviour forecasting based on mitigation. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :13–15.
Recently, most of the processes are being computerized, due to the development of information and communication technology. In proportion to this, cyber-attacks are also increasing, and state-sponsored cyber-attacks are becoming a great threat to the country. These attacks are often composed of stages and proceed step-by-step, so for defense, it is necessary to predict the next action and perform appropriate mitigation. To this end, the paper proposes a mitigation-based performance evaluation method. We developed the new true positive which can have a value between 0 and 1 according to the mitigation. The experiment result and case studies show that the proposed method can effectively measure forecasting results under cyber security defense system.
2022-05-10
Xu, Zheng, Chen, Ming, Chen, Mingzhe, Yang, Zhaohui, Cang, Yihan, Poor, H. Vincent.  2021.  Physical Layer Security Optimization for MIMO Enabled Visible Light Communication Networks. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
This paper investigates the optimization of physical layer security in multiple-input multiple-output (MIMO) enabled visible light communication (VLC) networks. In the considered model, one transmitter equipped with light-emitting diodes (LEDs) intends to send confidential messages to legitimate users while one eavesdropper attempts to eavesdrop on the communication between the transmitter and legitimate users. This security problem is formulated as an optimization problem whose goal is to minimize the sum mean-square-error (MSE) of all legitimate users while meeting the MSE requirement of the eavesdropper thus ensuring the security. To solve this problem, the original optimization problem is first transformed to a convex problem using successive convex approximation. An iterative algorithm with low complexity is proposed to solve this optimization problem. Simulation results show that the proposed algorithm can reduce the sum MSE of legitimate users by up to 40% compared to a conventional zero forcing scheme.
Ji, Xiaoyu, Cheng, Yushi, Zhang, Yuepeng, Wang, Kai, Yan, Chen, Xu, Wenyuan, Fu, Kevin.  2021.  Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision. 2021 IEEE Symposium on Security and Privacy (SP). :160–175.
Autonomous vehicles increasingly exploit computer-vision-based object detection systems to perceive environments and make critical driving decisions. To increase the quality of images, image stabilizers with inertial sensors are added to alleviate image blurring caused by camera jitters. However, such a trend opens a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of the emerging image stabilizer hardware susceptible to acoustic manipulation and the object detection algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even if the camera is stable. The blurred images can then induce object misclassification affecting safety-critical decision making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks, i.e., hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against four academic object detectors (YOLO V3/V4/V5 and Fast R-CNN), and one commercial detector (Apollo). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.
2022-05-06
Liu, Yao, Li, Luyu, Fan, Rong, Ma, Suya, Liu, Xuan, Su, Yishan.  2021.  A Physical Layer Security Mechanism based on Cooperative Jamming in Underwater Acoustic Sensor Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :239—243.
Due to broadcast nature of acoustic signal, underwater acoustic sensor networks face security challenge. In the paper, we propose a physical layer security transmission scheme with cooperative jamming. The proposed scheme takes advantage of the long propagation delay of the underwater acoustic channel to interfere with eavesdropper without affecting the reception of intended users. The results of both simulation and field experiment show that the proposed mechanism can improve the secrecy capacity of the network and effectively jam eavesdropper.
Qi, Xingyue, Lin, Chuan, Wang, Zhaohui, Du, Jiaxin, Han, Guangjie.  2021.  Proactive Alarming-enabled Path Planning for Multi-AUV-based Underwater IoT Systems. 2021 Computing, Communications and IoT Applications (ComComAp). :263—267.
The ongoing expansion of underwater Internet of Things techniques promote diverse categories of maritime intelligent systems, e.g., Underwater Acoustic Sensor Networks (UASNs), Underwater Wireless Networks (UWNs), especially multiple Autonomous Underwater Vehicle (AUV) based UWNs have produced many civil and military applications. To enhance the network management and scalability, in this paper, the technique of Software-Defined Networking (SDN) technique is introduced, leading to the paradigm of Software-Defined multi-AUV-based UWNs (SD-UWNs). With SD-UWNs, the network architecture is divided into three functional layers: data layer, control layer, and application layer, and the network administration is re-defined by a framework of software-defined beacon. To manage the network, a control model based on artificial potential field and network topology theory is constructed. On account of the efficient data sharing ability of SD-UWNs, a proactive alarming-enabled path planning scheme is proposed, wherein all potential categories of obstacle avoidance scenes are taken into account. Evaluation results indicate that the proposed SD-UWN is more efficient in scheduling the cooperative network function than the traditional approaches and can secure exact path planning.
Lei, Qinyi, Sun, Qi, Zhao, Linyan, Hong, Dehua, Hu, Cailiang.  2021.  Power Grid Data Confirmation Model Based on Behavior Characteristics. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1252–1256.
The power grid has high requirements for data security, and data security audit technology is facing challenges. Because the server in the power grid operating environment is considered untrustworthy and does not have the authority to obtain the secret key, the encrypted data cannot be parsed and the data processing ability of the data center is restricted. In response to the above problems, the power grid database encryption system was designed, and the access control module and the encryption module that should be written based on SQL statements were explained. The database encryption system was developed using the Java language and deployed in the cloud environment. Finally, the method was proved by experiments. feasibility.
2022-05-05
Nazir, Sajid, Poorun, Yovin, Kaleem, Mohammad.  2021.  Person Detection with Deep Learning and IoT for Smart Home Security on Amazon Cloud. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—6.
A smart home provides better living environment by allowing remote Internet access for controlling the home appliances and devices. Security of smart homes is an important application area commonly using Passive Infrared Sensors (PIRs), image capture and analysis but such solutions sometimes fail to detect an event. An unambiguous person detection is important for security applications so that no event is missed and also that there are no false alarms which result in waste of resources. Cloud platforms provide deep learning and IoT services which can be used to implement an automated and failsafe security application. In this paper, we demonstrate reliable person detection for indoor and outdoor scenarios by integrating an application running on an edge device with AWS cloud services. We provide results for identifying a person before authorizing entry, detecting any trespassing within the boundaries, and monitoring movements within the home.
Li, Luo, Li, Wen, Li, Xing.  2021.  A Power Grid Planning Method Considering Dynamic Limit of Renewable Energy Security Constraints. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :1101—1105.

This paper puts forward a dynamic reduction method of renewable energy based on N-1 safety standard of power system, which is suitable for high-voltage distribution network and can reduce the abandoned amount of renewable energy to an ideal level. On the basis of AC sensitivity coefficient, the optimization method of distribution factor suitable for single line or multi-line disconnection is proposed. Finally, taking an actual high-voltage distribution network in Germany as an example, the simulation results show that the proposed method can effectively limit the line load, and can greatly reduce the line load with less RES reduction.

2022-05-03
Hassan, Rakibul, Rafatirad, Setareh, Homayoun, Houman, Dinakarrao, Sai Manoj Pudukotai.  2021.  Performance-aware Malware Epidemic Confinement in Large-Scale IoT Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

As millions of IoT devices are interconnected together for better communication and computation, compromising even a single device opens a gateway for the adversary to access the network leading to an epidemic. It is pivotal to detect any malicious activity on a device and mitigate the threat. Among multiple feasible security threats, malware (malicious applications) poses a serious risk to modern IoT networks. A wide range of malware can replicate itself and propagate through the network via the underlying connectivity in the IoT networks making the malware epidemic inevitable. There exist several techniques ranging from heuristics to game-theory based technique to model the malware propagation and minimize the impact on the overall network. The state-of-the-art game-theory based approaches solely focus either on the network performance or the malware confinement but does not optimize both simultaneously. In this paper, we propose a throughput-aware game theory-based end-to-end IoT network security framework to confine the malware epidemic while preserving the overall network performance. We propose a two-player game with one player being the attacker and other being the defender. Each player has three different strategies and each strategy leads to a certain gain to that player with an associated cost. A tailored min-max algorithm was introduced to solve the game. We have evaluated our strategy on a 500 node network for different classes of malware and compare with existing state-of-the-art heuristic and game theory-based solutions.

2022-04-26
Loya, Jatan, Bana, Tejas.  2021.  Privacy-Preserving Keystroke Analysis using Fully Homomorphic Encryption amp; Differential Privacy. 2021 International Conference on Cyberworlds (CW). :291–294.

Keystroke dynamics is a behavioural biometric form of authentication based on the inherent typing behaviour of an individual. While this technique is gaining traction, protecting the privacy of the users is of utmost importance. Fully Homomorphic Encryption is a technique that allows performing computation on encrypted data, which enables processing of sensitive data in an untrusted environment. FHE is also known to be “future-proof” since it is a lattice-based cryptosystem that is regarded as quantum-safe. It has seen significant performance improvements over the years with substantially increased developer-friendly tools. We propose a neural network for keystroke analysis trained using differential privacy to speed up training while preserving privacy and predicting on encrypted data using FHE to keep the users' privacy intact while offering sufficient usability.

Feng, Tianyi, Zhang, Zhixiang, Wong, Wai-Choong, Sun, Sumei, Sikdar, Biplab.  2021.  A Privacy-Preserving Pedestrian Dead Reckoning Framework Based on Differential Privacy. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1487–1492.

Pedestrian dead reckoning (PDR) is a widely used approach to estimate locations and trajectories. Accessing location-based services with trajectory data can bring convenience to people, but may also raise privacy concerns that need to be addressed. In this paper, a privacy-preserving pedestrian dead reckoning framework is proposed to protect a user’s trajectory privacy based on differential privacy. We introduce two metrics to quantify trajectory privacy and data utility. Our proposed privacy-preserving trajectory extraction algorithm consists of three mechanisms for the initial locations, stride lengths and directions. In addition, we design an adversary model based on particle filtering to evaluate the performance and demonstrate the effectiveness of our proposed framework with our collected sensor reading dataset.

Wang, Haoxiang, Zhang, Jiasheng, Lu, Chenbei, Wu, Chenye.  2021.  Privacy Preserving in Non-Intrusive Load Monitoring: A Differential Privacy Perspective. 2021 IEEE Power Energy Society General Meeting (PESGM). :01–01.

Smart meter devices enable a better understanding of the demand at the potential risk of private information leakage. One promising solution to mitigating such risk is to inject noises into the meter data to achieve a certain level of differential privacy. In this paper, we cast one-shot non-intrusive load monitoring (NILM) in the compressive sensing framework, and bridge the gap between theoretical accuracy of NILM inference and differential privacy's parameters. We then derive the valid theoretical bounds to offer insights on how the differential privacy parameters affect the NILM performance. Moreover, we generalize our conclusions by proposing the hierarchical framework to solve the multishot NILM problem. Numerical experiments verify our analytical results and offer better physical insights of differential privacy in various practical scenarios. This also demonstrates the significance of our work for the general privacy preserving mechanism design.

2022-04-20
Keshk, Marwa, Turnbull, Benjamin, Moustafa, Nour, Vatsalan, Dinusha, Choo, Kim-Kwang Raymond.  2020.  A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Transactions on Industrial Informatics. 16:5110–5118.
Modern power systems depend on cyber-physical systems to link physical devices and control technologies. A major concern in the implementation of smart power networks is to minimize the risk of data privacy violation (e.g., by adversaries using data poisoning and inference attacks). In this article, we propose a privacy-preserving framework to achieve both privacy and security in smart power networks. The framework includes two main modules: a two-level privacy module and an anomaly detection module. In the two-level privacy module, an enhanced-proof-of-work-technique-based blockchain is designed to verify data integrity and mitigate data poisoning attacks, and a variational autoencoder is simultaneously applied for transforming data into an encoded format for preventing inference attacks. In the anomaly detection module, a long short-term memory deep learning technique is used for training and validating the outputs of the two-level privacy module using two public datasets. The results highlight that the proposed framework can efficiently protect data of smart power networks and discover abnormal behaviors, in comparison to several state-of-the-art techniques.
Conference Name: IEEE Transactions on Industrial Informatics
Keshk, Marwa, Turnbull, Benjamin, Sitnikova, Elena, Vatsalan, Dinusha, Moustafa, Nour.  2021.  Privacy-Preserving Schemes for Safeguarding Heterogeneous Data Sources in Cyber-Physical Systems. IEEE Access. 9:55077–55097.
Cyber-Physical Systems (CPS) underpin global critical infrastructure, including power, water, gas systems and smart grids. CPS, as a technology platform, is unique as a target for Advanced Persistent Threats (APTs), given the potentially high impact of a successful breach. Additionally, CPSs are targets as they produce significant amounts of heterogeneous data from the multitude of devices and networks included in their architecture. It is, therefore, essential to develop efficient privacy-preserving techniques for safeguarding system data from cyber attacks. This paper introduces a comprehensive review of the current privacy-preserving techniques for protecting CPS systems and their data from cyber attacks. Concepts of Privacy preservation and CPSs are discussed, demonstrating CPSs' components and the way these systems could be exploited by either cyber and physical hacking scenarios. Then, classification of privacy preservation according to the way they would be protected, including perturbation, authentication, machine learning (ML), cryptography and blockchain, are explained to illustrate how they would be employed for data privacy preservation. Finally, we show existing challenges, solutions and future research directions of privacy preservation in CPSs.
Conference Name: IEEE Access