Rai, Aditya, Miraz, MD. Mazharul Islam, Das, Deshbandhu, Kaur, Harpreet, Swati.
2021.
SQL Injection: Classification and Prevention. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :367—372.
With the world moving towards digitalization, more applications and servers are online hosted on the internet, more number of vulnerabilities came out which directly affects an individual and an organization financially and in terms of reputation too. Out of those many vulnerabilities such as Injection, Deserialization, Cross site scripting and more. Injection stand top as the most critical vulnerability found in the web application. Injection itself is a broad vulnerability as it further consists of SQL Injection, Command injection, LDAP Injection, No-SQL Injection etc. In this paper we have reviewed SQL Injection, different types of SQL injection attacks, their causes and remediation to comprehend this attack.
Fan, Chengwei, Chen, Zhen, Wang, Xiaoru, Teng, Yufei, Chen, Gang, Zhang, Hua, Han, Xiaoyan.
2019.
Static Security Assessment of Power System Considering Governor Nonlinearity. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :128–133.
Static security assessment is of great significance to ensure the stable transmission of electric power and steady operation of load. The scale of power system trends to expand due to the development of interconnected grid, and the security analysis of the entire network has become time-consuming. On the basis of synthesizing the efficiency and accuracy, a new method is developed. This method adopts a novel dynamic power flow (DPF) model considering the influence of governor deadband and amplitude-limit on the steady state quantitatively. In order to reduce the computation cost, a contingency screening algorithm based on binary search method is proposed. Static security assessment based on the proposed DPF models is applied to calculate the security margin constrained by severe contingencies. The ones with lower margin are chosen for further time-domain (TD) simulation analysis. The case study of a practical grid verifies the accuracy of the proposed model compared with the conventional one considering no governor nonlinearity. Moreover, the test of a practical grid in China, along with the TD simulation, demonstrates that the proposed method avoids massive simulations of all contingencies as well as provides detail information of severe ones, which is effective for security analysis of practical power grids.
Bendre, Nihar, Desai, Kevin, Najafirad, Peyman.
2021.
Show Why the Answer is Correct! Towards Explainable AI using Compositional Temporal Attention. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3006–3012.
Visual Question Answering (VQA) models have achieved significant success in recent times. Despite the success of VQA models, they are mostly black-box models providing no reasoning about the predicted answer, thus raising questions for their applicability in safety-critical such as autonomous systems and cyber-security. Current state of the art fail to better complex questions and thus are unable to exploit compositionality. To minimize the black-box effect of these models and also to make them better exploit compositionality, we propose a Dynamic Neural Network (DMN), which can understand a particular question and then dynamically assemble various relatively shallow deep learning modules from a pool of modules to form a network. We incorporate compositional temporal attention to these deep learning based modules to increase compositionality exploitation. This results in achieving better understanding of complex questions and also provides reasoning as to why the module predicts a particular answer. Experimental analysis on the two benchmark datasets, VQA2.0 and CLEVR, depicts that our model outperforms the previous approaches for Visual Question Answering task as well as provides better reasoning, thus making it reliable for mission critical applications like safety and security.
Viand, Alexander, Jattke, Patrick, Hithnawi, Anwar.
2021.
SoK: Fully Homomorphic Encryption Compilers. 2021 IEEE Symposium on Security and Privacy (SP). :1092—1108.
Fully Homomorphic Encryption (FHE) allows a third party to perform arbitrary computations on encrypted data, learning neither the inputs nor the computation results. Hence, it provides resilience in situations where computations are carried out by an untrusted or potentially compromised party. This powerful concept was first conceived by Rivest et al. in the 1970s. However, it remained unrealized until Craig Gentry presented the first feasible FHE scheme in 2009.The advent of the massive collection of sensitive data in cloud services, coupled with a plague of data breaches, moved highly regulated businesses to increasingly demand confidential and secure computing solutions. This demand, in turn, has led to a recent surge in the development of FHE tools. To understand the landscape of recent FHE tool developments, we conduct an extensive survey and experimental evaluation to explore the current state of the art and identify areas for future development.In this paper, we survey, evaluate, and systematize FHE tools and compilers. We perform experiments to evaluate these tools’ performance and usability aspects on a variety of applications. We conclude with recommendations for developers intending to develop FHE-based applications and a discussion on future directions for FHE tools development.
Saki, Abdullah Ash, Suresh, Aakarshitha, Topaloglu, Rasit Onur, Ghosh, Swaroop.
2021.
Split Compilation for Security of Quantum Circuits. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1—7.
An efficient quantum circuit (program) compiler aims to minimize the gate-count - through efficient instruction translation, routing, gate, and cancellation - to improve run-time and noise. Therefore, a high-efficiency compiler is paramount to enable the game-changing promises of quantum computers. To date, the quantum computing hardware providers are offering a software stack supporting their hardware. However, several third-party software toolchains, including compilers, are emerging. They support hardware from different vendors and potentially offer better efficiency. As the quantum computing ecosystem becomes more popular and practical, it is only prudent to assume that more companies will start offering software-as-a-service for quantum computers, including high-performance compilers. With the emergence of third-party compilers, the security and privacy issues of quantum intellectual properties (IPs) will follow. A quantum circuit can include sensitive information such as critical financial analysis and proprietary algorithms. Therefore, submitting quantum circuits to untrusted compilers creates opportunities for adversaries to steal IPs. In this paper, we present a split compilation methodology to secure IPs from untrusted compilers while taking advantage of their optimizations. In this methodology, a quantum circuit is split into multiple parts that are sent to a single compiler at different times or to multiple compilers. In this way, the adversary has access to partial information. With analysis of over 152 circuits on three IBM hardware architectures, we demonstrate the split compilation methodology can completely secure IPs (when multiple compilers are used) or can introduce factorial time reconstruction complexity while incurring a modest overhead ( 3% to 6% on average).
Alatoun, Khitam, Shankaranarayanan, Bharath, Achyutha, Shanmukha Murali, Vemuri, Ranga.
2021.
SoC Trust Validation Using Assertion-Based Security Monitors. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :496—503.
Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.
Blanco, Geison, Perez, Juan, Monsalve, Jonathan, Marquez, Miguel, Esnaola, Iñaki, Arguello, Henry.
2021.
Single Snapshot System for Compressive Covariance Matrix Estimation for Hyperspectral Imaging via Lenslet Array. 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA). :1—5.
Compressive Covariance Sampling (CCS) is a strategy used to recover the covariance matrix (CM) directly from compressive measurements. Several works have proven the advantages of CSS in Compressive Spectral Imaging (CSI) but most of these algorithms require multiple random projections of the scene to obtain good reconstructions. However, several low-resolution copies of the scene can be captured in a single snapshot through a lenslet array. For this reason, this paper proposes a sensing protocol and a single snapshot CCS optical architecture using a lenslet array based on the Dual Dispersive Aperture Spectral Imager(DD-CASSI) that allows the recovery of the covariance matrix with a single snapshot. In this architecture uses the lenslet array allows to obtain different projections of the image in a shot due to the special coded aperture. In order to validate the proposed approach, simulations evaluated the quality of the recovered CM and the performance recovering the spectral signatures against traditional methods. Results show that the image reconstructions using CM have PSNR values about 30 dB, and reconstructed spectrum has a spectral angle mapper (SAM) error less than 15° compared to the original spectral signatures.
Zhu, Zhen, Chi, Cheng, Zhang, Chunhua.
2021.
Spatial-Resampling Wideband Compressive Beamforming. OCEANS 2021: San Diego – Porto. :1—4.
Compressive beamforming has been successfully applied to the estimation of the direction of arrival (DOA) of array signals, and has higher angular resolution than traditional high-resolution beamforming methods. However, most of the existing compressive beamforming methods are based on narrow signal models. Wideband signal processing using these existing compressive beamforming methods is to divide the frequency band into several narrow-bands and add up the beamforming results of each narrow-band. However, for sonar application, signals usually consist of continuous spectrum and line spectrum, and the line spectrum is usually more than 10dB higher than the continuous spectrum. Due to the large difference of signal-to-noise ratio (SNR) of each narrow-band, different regularization parameters should be used, otherwise it is difficult to get an ideal result, which makes compressive beamforming highly complicated. In this paper, a compressive beamforming method based on spatial resampling for uniform linear arrays is proposed. The signals are converted into narrow-band signals by spatial resampling technique, and compressive beamforming is then performed to estimate the DOA of the sound source. Experimental results show the superiority of the proposed method, which avoids the problem of using different parameters in the existing compressive beamforming methods, and the resolution is comparable to the existing methods using different parameters for wideband models. The spatial-resampling compressive beamforming has a better robustness when the regularization parameter is fixed, and exhibits lower levels of background interference than the existing methods.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.
2021.
Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.