Biblio
The Internet, originally an academic network for the rapid exchange of information, has moved over time into the commercial media, business and later industrial communications environment. Recently, it has been included as a part of cyberspace as a combat domain. Any device connected to the unprotected Internet is thus exposed to possible attacks by various groups and individuals pursuing various criminal, security and political objectives. Therefore, each such device must be set up to be as resistant as possible to these attacks. For the implementation of small home, academic or industrial systems, people very often use small computing system Raspberry PI, which is usually equipped with the operating system Raspbian Linux. Such a device is often connected to an unprotected Internet environment and if successfully attacked, can act as a gateway for an attacker to enter the internal network of an organization or home. This paper deals with security configuration of Raspbian Linux operating system for operation on public IP addresses in an unprotected Internet environment. The content of this paper is the conduction and analysis of an experiment in which five Raspbian Linux/Raspberry PI accounts were created with varying security levels; the easiest to attack is a simulation of the device of a user who has left the system without additional security. The accounts that follow gradually add further protection and security. These accounts are used to simulate a variety of experienced users, and in a practical experiment the effects of these security measures are evaluated; such as the number of successful / unsuccessful attacks; where the attacks are from; the type and intensity of the attacks; and the target of the attack. The results of this experiment lead to formulated conclusions containing an analysis of the attack and subsequent design recommendations and settings to secure such a device. The subsequent section of the paper discusses the implementation of a simple TCP server that is configured to listen to incoming traffic on preset ports; it simulates the behaviour of selected services on these ports. This server's task is to intercept unauthorized connection attempts to these ports and intercepting attempts to communicate or attack these services. These recorded attack attempts are analyzed in detail and formulated in the conclusion, including implications for the security settings of such a device. The overall result of this paper is the recommended set up of operating system Raspbian Linux to work on public IP addresses in an unfiltered Internet environment.
With the rapid increase of practical problem complexity and code scale, the threat of software security is increasingly serious. Consequently, it is crucial to pay attention to the analysis of software source code vulnerability in the development stage and take efficient measures to detect the vulnerability as soon as possible. Machine learning techniques have made remarkable achievements in various fields. However, the application of machine learning in the domain of vulnerability static analysis is still in its infancy and the characteristics and performance of diverse methods are quite different. In this survey, we focus on a source code-oriented static vulnerability analysis method using machine learning techniques. We review the studies on source code vulnerability analysis based on machine learning in the past decade. We systematically summarize the development trends and different technical characteristics in this field from the perspectives of the intermediate representation of source code and vulnerability prediction model and put forward several feasible research directions in the future according to the limitations of the current approaches.
Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.