Visible to the public Biblio

Found 2189 results

Filters: First Letter Of Title is S  [Clear All Filters]
2022-08-01
Khalid, Haqi, Hashim, Shaiful Jahari, Mumtazah Syed Ahamed, Sharifah, Hashim, Fazirulhisyam, Chaudhary, Muhammad Akmal.  2021.  Secure Real-time Data Access Using Two-Factor Authentication Scheme for the Internet of Drones. 2021 IEEE 19th Student Conference on Research and Development (SCOReD). :168—173.
The Internet of Drones (IoD) is a distributed network control system that mainly manages unmanned aerial vehicle access to controlled airspace and provides navigation between so-called nodes. Securing the transmission of real-time information from the nodes in these applications is essential. The limited drone nodes, data storage, computing and communication capabilities necessitate the need to design an effective and secure authentication scheme. Recently, research has proposed remote user authentication and the key agreement on IoD and claimed that their schemes satisfied all security issues in these networks. However, we found that their schemes may lead to losing access to the drone system due to the corruption of using a key management system and make the system completely unusable. To solve this drawback, we propose a lightweight and anonymous two-factor authentication scheme for drones. The proposed scheme is based on an asymmetric cryptographic method to provide a secure system and is more suitable than the other existing schemes by securing real-time information. Moreover, the comparison shows that the proposed scheme minimized the complexity of communication and computation costs.
2022-07-29
Iqbal, Shahrear.  2021.  A Study on UAV Operating System Security and Future Research Challenges. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0759—0765.
The popularity of Unmanned Aerial Vehicles (UAV) or more commonly known as Drones is increasing recently. UAVs have tremendous potential in various industries, e.g., military, agriculture, transportation, movie, supply chain, and surveillance. UAVs are also popular among hobbyists for photography, racing, etc. Despite the possibilities, many UAV related security incidents are reported nowadays. UAVs can be targeted by malicious parties and if compromised, life-threatening activities can be performed using them. As a result, governments around the world have started to regulate the use of UAVs. We believe that UAVs need an intelligent and automated defense mechanism to ensure the safety of humans, properties, and the UAVs themselves. A major component where we can incorporate the defense mechanism is the operating system. In this paper, we investigate the security of existing operating systems used in consumer and commercial UAVs. We then survey various security issues of UAV operating systems and possible solutions. Finally, we discuss several research challenges for developing a secure operating system for UAVs.
Gallus, Petr, Frantis, Petr.  2021.  Security analysis of the Raspbian Linux operating system and its settings to increase resilience against attacks via network interface. 2021 International Conference on Military Technologies (ICMT). :1—5.

The Internet, originally an academic network for the rapid exchange of information, has moved over time into the commercial media, business and later industrial communications environment. Recently, it has been included as a part of cyberspace as a combat domain. Any device connected to the unprotected Internet is thus exposed to possible attacks by various groups and individuals pursuing various criminal, security and political objectives. Therefore, each such device must be set up to be as resistant as possible to these attacks. For the implementation of small home, academic or industrial systems, people very often use small computing system Raspberry PI, which is usually equipped with the operating system Raspbian Linux. Such a device is often connected to an unprotected Internet environment and if successfully attacked, can act as a gateway for an attacker to enter the internal network of an organization or home. This paper deals with security configuration of Raspbian Linux operating system for operation on public IP addresses in an unprotected Internet environment. The content of this paper is the conduction and analysis of an experiment in which five Raspbian Linux/Raspberry PI accounts were created with varying security levels; the easiest to attack is a simulation of the device of a user who has left the system without additional security. The accounts that follow gradually add further protection and security. These accounts are used to simulate a variety of experienced users, and in a practical experiment the effects of these security measures are evaluated; such as the number of successful / unsuccessful attacks; where the attacks are from; the type and intensity of the attacks; and the target of the attack. The results of this experiment lead to formulated conclusions containing an analysis of the attack and subsequent design recommendations and settings to secure such a device. The subsequent section of the paper discusses the implementation of a simple TCP server that is configured to listen to incoming traffic on preset ports; it simulates the behaviour of selected services on these ports. This server's task is to intercept unauthorized connection attempts to these ports and intercepting attempts to communicate or attack these services. These recorded attack attempts are analyzed in detail and formulated in the conclusion, including implications for the security settings of such a device. The overall result of this paper is the recommended set up of operating system Raspbian Linux to work on public IP addresses in an unfiltered Internet environment.

Wang, Junchao, Pang, Jianmin, Shan, Zheng, Wei, Jin, Yao, Jinyang, Liu, Fudong.  2021.  A Software Diversity-Based Lab in Operating System for Cyber Security Students. 2021 IEEE 3rd International Conference on Computer Science and Educational Informatization (CSEI). :296—299.
The course of operating system's labs usually fall behind the state of art technology. In this paper, we propose a Software Diversity-Assisted Defense (SDAD) lab based on software diversity, mainly targeting for students majoring in cyber security and computer science. This lab is consisted of multiple modules and covers most of the important concepts and principles in operating systems. Thus, the knowledge learned from the theoretical course will be deepened with the lab. For students majoring in cyber security, they can learn this new software diversity-based defense technology and understand how an exploit works from the attacker's side. The experiment is also quite stretchable, which can fit all level students.
Bhosale, Kalyani, Chen, Chao-Yu, Li, Ming-Huang, Li, Sheng-Shian.  2021.  Standard CMOS Integrated Ultra-Compact Micromechanical Oscillating Active Pixel Arrays. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). :157–160.
This work demonstrates an ultra-compact low power oscillating micromechanical active pixel array based on a 0.35 μm back-end of line (BEOL)-embedded CMOS-MEMS technology. Each pixel consists of a 3-MHz clamped-clamped beam (CCB) MEMS resonator and a power scalable transimpedance amplifier (TIA) that occupies a small area of 70 × 60 μm2 and draws only 85 μW/pixel. The MEMS resonator is placed next to the TIA with less than 10 μm spacing thanks to the well-defined etch stops in the titanium nitride composite (TiN-C) CMOS-MEMS platform. A multiplexing phase-locked loop (PLL)-driven oscillator is employed to demonstrate the chip functionality. In particular, a nonlinear operation of the resonator tank is used to optimize the phase noise (PN) performance and Allan deviation (ADEV) behavior. The ADEV of 420 ppb averaged over best 3-pixels is exhibited based on such a nonlinear vibration operation.
Ismaeel, Khaled, Naumchev, Alexandr, Sadovykh, Andrey, Truscan, Dragos, Enoiu, Eduard Paul, Seceleanu, Cristina.  2021.  Security Requirements as Code: Example from VeriDevOps Project. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :357–363.
This position paper presents and illustrates the concept of security requirements as code – a novel approach to security requirements specification. The aspiration to minimize code duplication and maximize its reuse has always been driving the evolution of software development approaches. Object-Oriented programming (OOP) takes these approaches to the state in which the resulting code conceptually maps to the problem that the code is supposed to solve. People nowadays start learning to program in the primary school. On the other hand, requirements engineers still heavily rely on natural language based techniques to specify requirements. The key idea of this paper is: artifacts produced by the requirements process should be treated as input to the regular object-oriented analysis. Therefore, the contribution of this paper is the presentation of the major concepts for the security requirements as the code method that is illustrated with a real industry example from the VeriDevOps project.
Saxena, Nikhil, Narayanan, Ram Venkat, Meka, Juneet Kumar, Vemuri, Ranga.  2021.  SRTLock: A Sensitivity Resilient Two-Tier Logic Encryption Scheme. 2021 IEEE International Symposium on Smart Electronic Systems (iSES). :389—394.
Logic encryption is a method to improve hardware security by inserting key gates on carefully selected signals in a logic design. Various logic encryption schemes have been proposed in the past decade. Many attack methods to thwart these logic locking schemes have also emerged. The satisfiability (SAT) attack can recover correct keys for many logic obfuscation methods. Recently proposed sensitivity analysis attack can decrypt stripped functionality based logic encryption schemes. This article presents a new encryption scheme named SRTLock, which is resilient against both attacks. SRTLock method first generates 0-injection circuits and encrypts the functionality of these nodes with the key inputs. In the next step, these values are used to control the sensitivity of the functionally stripped output for specific input patterns. The resultant locked circuit is resilient against the SAT and sensitivity analysis attacks. Experimental results demonstrating this on several attacks using standard benchmark circuits are presented.
Shanmukha Naga Naidu, P., Naga Sumanth, B., Sri Ram Koduri, Pavan, Sri Ram Teja, M., Remadevi Somanathan, Geethu, Bhakthavatchalu, Ramesh.  2021.  Secured Test Pattern Generators for BIST. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :542—546.
With the development in IC technology, testing the designs is becoming more and more complex. In the design, process testing consumes 60-80% of the time. The basic testing principle is providing the circuit under test (CUT) with input patterns, observing output responses, and comparing against the desired response called the golden response. As the density of the device are rising leads to difficulty in examining the sub-circuit of the chip. So, testing of design is becoming a time-consuming and costly process. Attaching additional logic to the circuit resolves the issue by testing itself. BIST is a relatively a design for testability technique to facilitate thorough testing of ICs and it comprises the test pattern generator, circuit under test, and output response analyzer. Quick diagnosis and very high fault coverage can be ensured by BIST. As complexity in the circuit is increasing, testing urges TPGs (Test Pattern Generators) to generate the test patterns for the CUT to sensitize the faults. TPGs are vulnerable to malicious activities such as scan-based side-channel attacks. Secret data saved on the chip can be extracted by an attacker by scanning out the test outcomes. These threats lead to the emergence of securing TPGs. This work demonstrates providing a secured test pattern generator for BIST circuits by locking the logic of TPG with a password or key generated by the key generation circuit. Only when the key is provided test patterns are generated. This provides versatile protection to TPG from malicious attacks such as scan-based side-channel attacks, Intellectual Property (IP) privacy, and IC overproduction.
2022-07-28
Wang, Jingjing, Huang, Minhuan, Nie, Yuanping, Li, Jin.  2021.  Static Analysis of Source Code Vulnerability Using Machine Learning Techniques: A Survey. 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD). :76—86.

With the rapid increase of practical problem complexity and code scale, the threat of software security is increasingly serious. Consequently, it is crucial to pay attention to the analysis of software source code vulnerability in the development stage and take efficient measures to detect the vulnerability as soon as possible. Machine learning techniques have made remarkable achievements in various fields. However, the application of machine learning in the domain of vulnerability static analysis is still in its infancy and the characteristics and performance of diverse methods are quite different. In this survey, we focus on a source code-oriented static vulnerability analysis method using machine learning techniques. We review the studies on source code vulnerability analysis based on machine learning in the past decade. We systematically summarize the development trends and different technical characteristics in this field from the perspectives of the intermediate representation of source code and vulnerability prediction model and put forward several feasible research directions in the future according to the limitations of the current approaches.

Qian, Tiantian, Yang, Shengchun, Wang, Shenghe, Pan, Dong, Geng, Jian, Wang, Ke.  2021.  Static Security Analysis of Source-Side High Uncertainty Power Grid Based on Deep Learning. 2021 China International Conference on Electricity Distribution (CICED). :973—975.
As a large amount of renewable energy is injected into the power grid, the source side of the power grid becomes extremely uncertain. Traditional static safety analysis methods based on pure physical models can no longer quickly and reliably give analysis results. Therefore, this paper proposes a deep learning-based static security analytical method. First, the static security assessment index of the power grid under the N-1 principle is proposed. Secondly, a neural network model and its input and output data for static safety analysis problems are designed. Finally, the validity of the proposed method was verified by IEEE grid data. Experiments show that the proposed method can quickly and accurately give the static security analysis results of the source-side high uncertainty grid.
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-07-15
D'Arco, Paolo, Ansaroudi, Zahra Ebadi.  2021.  Security Attacks on Multi-Stage Proof-of-Work. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :698—703.
Multi-stage Proof-of-Work is a recently proposed protocol which extends the Proof-of-Work protocol used in Bitcoin. It splits Proof-of-Work into multiple stages, to achieve a more efficient block generation and a fair reward distribution. In this paper we study some of the Multi-stage Proof-of-Work security vulnerabilities. Precisely, we present two attacks: a Selfish Mining attack and a Selfish Stage-Withholding attack. We show that Multi-stage Proof-of-Work is not secure against a selfish miner owning more than 25% of the network hashing power. Moreover, we show that Selfish Stage-Withholding is a complementary strategy to boost a selfish miner's profitability.
Figueiredo, Cainã, Lopes, João Gabriel, Azevedo, Rodrigo, Zaverucha, Gerson, Menasché, Daniel Sadoc, Pfleger de Aguiar, Leandro.  2021.  Software Vulnerabilities, Products and Exploits: A Statistical Relational Learning Approach. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :41—46.
Data on software vulnerabilities, products and exploits is typically collected from multiple non-structured sources. Valuable information, e.g., on which products are affected by which exploits, is conveyed by matching data from those sources, i.e., through their relations. In this paper, we leverage this simple albeit unexplored observation to introduce a statistical relational learning (SRL) approach for the analysis of vulnerabilities, products and exploits. In particular, we focus on the problem of determining the existence of an exploit for a given product, given information about the relations between products and vulnerabilities, and vulnerabilities and exploits, focusing on Industrial Control Systems (ICS), the National Vulnerability Database and ExploitDB. Using RDN-Boost, we were able to reach an AUC ROC of 0.83 and an AUC PR of 0.69 for the problem at hand. To reach that performance, we indicate that it is instrumental to include textual features, e.g., extracted from the description of vulnerabilities, as well as structured information, e.g., about product categories. In addition, using interpretable relational regression trees we report simple rules that shed insight on factors impacting the weaponization of ICS products.
Sánchez, Ricardo Andrés González, Bernal, Davor Julián Moreno, Parada, Hector Dario Jaimes.  2021.  Security assessment of Nosql Mongodb, Redis and Cassandra database managers. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—7.
The advancement of technology in the creation of new tools to solve problems such as information storage generates proportionally developing methods that search for security flaws or breaches that compromise said information. The need to periodically generate security reports on database managers is given by the complexity and number of attacks that can be carried out today. This project seeks to carry out an evaluation of the security of NoSQL database managers. The work methodology is developed according to the order of the objectives, it begins by synthesizing the types of vulnerabilities, attacks and protection schemes limited to MongoDB, Redis and Apache Cassandra. Once established, a prototype of a web system that stores information with a non-relational database will be designed on which a series of attacks defined by a test plan will be applied seeking to add, consult, modify or eliminate information. Finally, a report will be presented that sets out the attacks carried out, the way in which they were applied, the results, possible countermeasures, security advantages and disadvantages for each manager and the conclusions obtained. Thus, it is possible to select which tool is more convenient to use for a person or organization in a particular case. The results showed that MongoDB is more vulnerable to NoSQL injection attacks, Redis is more vulnerable to attacks registered in the CVE and that Cassandra is more complex to use but is less vulnerable.
Wang, Yan, Allouache, Yacine, Joubert, Christian.  2021.  A Staffing Recommender System based on Domain-Specific Knowledge Graph. 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). :1—6.
In the economics environment, Job Matching is always a challenge involving the evolution of knowledge and skills. A good matching of skills and jobs can stimulate the growth of economics. Recommender System (RecSys), as one kind of Job Matching, can help the candidates predict the future job relevant to their preferences. However, RecSys still has the problem of cold start and data sparsity. The content-based filtering in RecSys needs the adaptive data for the specific staffing tasks of Bidirectional Encoder Representations from Transformers (BERT). In this paper, we propose a job RecSys based on skills and locations using a domain-specific Knowledge Graph (KG). This system has three parts: a pipeline of Named Entity Recognition (NER) and Relation Extraction (RE) using BERT; a standardization system for pre-processing, semantic enrichment and semantic similarity measurement; a domain-specific Knowledge Graph (KG). Two different relations in the KG are computed by cosine similarity and Term Frequency-Inverse Document Frequency (TF-IDF) respectively. The raw data used in the staffing RecSys include 3000 descriptions of job offers from Indeed, 126 Curriculum Vitae (CV) in English from Kaggle and 106 CV in French from Linx of Capgemini Engineering. The staffing RecSys is integrated under an architecture of Microservices. The autonomy and effectiveness of the staffing RecSys are verified through the experiment using Discounted Cumulative Gain (DCG). Finally, we propose several potential research directions for this research.
N, Praveena., Vivekanandan, K..  2021.  A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
2022-07-14
Henkel, Werner, Namachanja, Maria.  2021.  A Simple Physical-Layer Key Generation for Frequency-Division Duplexing (FDD). 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Common randomness of channels offers the possibility to create cryptographic keys without the need for a key exchange procedure. Channel reciprocity for TDD (time-division duplexing) systems has been used for this purpose many times. FDD (frequency-division duplexing) systems, however, were long considered to not provide any usable symmetry. However, since the scattering transmission parameters S\textbackslashtextlessinf\textbackslashtextgreater12\textbackslashtextless/inf\textbackslashtextgreater and S\textbackslashtextlessinf\textbackslashtextgreater21\textbackslashtextless/inf\textbackslashtextgreater would ideally be the same due to reciprocity, when using neighboring frequency ranges for both directions, they would just follow a continuous curve when putting them next to each other. To not rely on absolute phase, we use phase differences between antennas and apply a polynomial curve fitting, thereafter, quantize the midpoint between the two frequency ranges with the two measurement directions. This is shown to work even with some spacing between the two bands. For key reconciliation, we force the measurement point from one direction to be in the midpoint of the quantization interval by a grid shift (or likewise measurement data shift). Since the histogram over the quantization intervals does not follow a uniform distribution, some source coding / hashing will be necessary. The key disagreement rate toward an eavesdropper was found to be close to 0.5. Additionally, when using an antenna array, a random permutation of antenna measurements can even further improve the protection against eavesdropping.
Ayub, Md. Ahsan, Sirai, Ambareen.  2021.  Similarity Analysis of Ransomware based on Portable Executable (PE) File Metadata. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–6.
Threats, posed by ransomware, are rapidly increasing, and its cost on both national and global scales is becoming significantly high as evidenced by the recent events. Ransomware carries out an irreversible process, where it encrypts victims' digital assets to seek financial compensations. Adversaries utilize different means to gain initial access to the target machines, such as phishing emails, vulnerable public-facing software, Remote Desktop Protocol (RDP), brute-force attacks, and stolen accounts. To combat these threats of ransomware, this paper aims to help researchers gain a better understanding of ransomware application profiles through static analysis, where we identify a list of suspicious indicators and similarities among 727 active ran-somware samples. We start with generating portable executable (PE) metadata for all the studied samples. With our domain knowledge and exploratory data analysis tasks, we introduce some of the suspicious indicators of the structure of ransomware files. We reduce the dimensionality of the generated dataset by using the Principal Component Analysis (PCA) technique and discover clusters by applying the KMeans algorithm. This motivates us to utilize the one-class classification algorithms on the generated dataset. As a result, the algorithms learn the common data boundary in the structure of our studied ransomware samples, and thereby, we achieve the data-driven similarities. We use the findings to evaluate the trained classifiers with the test samples and observe that the Local Outlier Factor (LoF) performs better on all the selected feature spaces compared to the One-Class SVM and the Isolation Forest algorithms.
Lee, Sun-Jin, Shim, Hye-Yeon, Lee, Yu-Rim, Park, Tae-Rim, Park, So-Hyun, Lee, Il-Gu.  2021.  Study on Systematic Ransomware Detection Techniques. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :297–301.
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
2022-07-13
Yakymenko, Igor, Kasianchuk, Mykhailo, Yatskiv, Vasyl, Shevchuk, Ruslan, Koval, Vasyl, Yatskiv, Solomiya.  2021.  Sustainability and Time Complexity Estimation of Сryptographic Algorithms Main Operations on Elliptic Curves. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :494—498.
This paper presents the time complexity estimates for the methods of points exponentiation, which are basic for encrypting information flows in computer systems. As a result of numerical experiments, it is determined that the method of doubling-addition-subtraction has the lowest complexity. Mathematical models for determining the execution time of each considered algorithm for points exponentiation on elliptic curves were developed, which allowed to conduct in-depth analysis of their performance and resistance to special attacks, in particular timing analysis attack. The dependences of the cryptographic operations execution time on the key length and the sustainability of each method on the Hamming weight are investigated. It is proved that under certain conditions the highest sustainability of the system is achieved by the doubling-addition-subtraction algorithm. This allows to justify the choice of algorithm and its parameters for the implementation of cryptographic information security, which is resistant to special attacks.
2022-07-12
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.  2021.  A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
Kanca, Ali Melih, Sagiroglu, Seref.  2021.  Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
Tekiner, Ege, Acar, Abbas, Uluagac, A. Selcuk, Kirda, Engin, Selcuk, Ali Aydin.  2021.  SoK: Cryptojacking Malware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :120—139.
Emerging blockchain and cryptocurrency-based technologies are redefining the way we conduct business in cyberspace. Today, a myriad of blockchain and cryp-tocurrency systems, applications, and technologies are widely available to companies, end-users, and even malicious actors who want to exploit the computational resources of regular users through cryptojacking malware. Especially with ready-to-use mining scripts easily provided by service providers (e.g., Coinhive) and untraceable cryptocurrencies (e.g., Monero), cryptojacking malware has become an indispensable tool for attackers. Indeed, the banking industry, major commercial websites, government and military servers (e.g., US Dept. of Defense), online video sharing platforms (e.g., Youtube), gaming platforms (e.g., Nintendo), critical infrastructure resources (e.g., routers), and even recently widely popular remote video conferencing/meeting programs (e.g., Zoom during the Covid-19 pandemic) have all been the victims of powerful cryptojacking malware campaigns. Nonetheless, existing detection methods such as browser extensions that protect users with blacklist methods or antivirus programs with different analysis methods can only provide a partial panacea to this emerging crypto-jacking issue as the attackers can easily bypass them by using obfuscation techniques or changing their domains or scripts frequently. Therefore, many studies in the literature proposed cryptojacking malware detection methods using various dynamic/behavioral features. However, the literature lacks a systemic study with a deep understanding of the emerging cryptojacking malware and a comprehensive review of studies in the literature. To fill this gap in the literature, in this SoK paper, we present a systematic overview of cryptojacking malware based on the information obtained from the combination of academic research papers, two large cryptojacking datasets of samples, and 45 major attack instances. Finally, we also present lessons learned and new research directions to help the research community in this emerging area.
2022-07-05
Parizad, Ali, Hatziadoniu, Constantine.  2021.  Semi-Supervised False Data Detection Using Gated Recurrent Units and Threshold Scoring Algorithm. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
In recent years, cyber attackers are targeting the power system and imposing different damages to the national economy and public safety. False Data Injection Attack (FDIA) is one of the main types of Cyber-Physical attacks that adversaries can manipulate power system measurements and modify system data. Consequently, it may result in incorrect decision-making and control operations and lead to devastating effects. In this paper, we propose a two-stage detection method. In the first step, Gated Recurrent Unit (GRU), as a deep learning algorithm, is employed to forecast the data for the future horizon. Meanwhile, hyperparameter optimization is implemented to find the optimum parameters (i.e., number of layers, epoch, batch size, β1, β2, etc.) in the supervised learning process. In the second step, an unsupervised scoring algorithm is employed to find the sequences of false data. Furthermore, two penalty factors are defined to prevent the objective function from greedy behavior. We assess the capability of the proposed false data detection method through simulation studies on a real-world data set (ComEd. dataset, Northern Illinois, USA). The results demonstrate that the proposed method can detect different types of attacks, i.e., scaling, simple ramp, professional ramp, and random attacks, with good performance metrics (i.e., recall, precision, F1 Score). Furthermore, the proposed deep learning method can mitigate false data with the estimated true values.