Pang, Yijiang, Huang, Chao, Liu, Rui.
2021.
Synthesized Trust Learning from Limited Human Feedback for Human-Load-Reduced Multi-Robot Deployments. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :778–783.
Human multi-robot system (MRS) collaboration is demonstrating potentials in wide application scenarios due to the integration of human cognitive skills and a robot team’s powerful capability introduced by its multi-member structure. However, due to limited human cognitive capability, a human cannot simultaneously monitor multiple robots and identify the abnormal ones, largely limiting the efficiency of the human-MRS collaboration. There is an urgent need to proactively reduce unnecessary human engagements and further reduce human cognitive loads. Human trust in human MRS collaboration reveals human expectations on robot performance. Based on trust estimation, the work between a human and MRS will be reallocated that an MRS will self-monitor and only request human guidance in critical situations. Inspired by that, a novel Synthesized Trust Learning (STL) method was developed to model human trust in the collaboration. STL explores two aspects of human trust (trust level and trust preference), meanwhile accelerates the convergence speed by integrating active learning to reduce human workload. To validate the effectiveness of the method, tasks "searching victims in the context of city rescue" were designed in an open-world simulation environment, and a user study with 10 volunteers was conducted to generate real human trust feedback. The results showed that by maximally utilizing human feedback, the STL achieved higher accuracy in trust modeling with a few human feedback, effectively reducing human interventions needed for modeling an accurate trust, therefore reducing human cognitive load in the collaboration.
Sethi, Tanmay, Mathew, Rejo.
2021.
A Study on Advancement in Honeypot based Network Security Model. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :94–97.
Throughout the years, honeypots have been very useful in tracking down attackers and preventing different types of cyber attacks on a very large scale. It's been almost 3 decades since the discover of honeypots and still more than 80% of the companies rely on this system because of intrusion detection features and low false positive rate. But with time, the attackers tend to start discovering loopholes in the system. Hence it is very important to be up to date with the technology when it comes to protecting a computing device from the emerging cyber attacks. Timely advancements in the security model provided by the honeypots helps in a more efficient use of the resource and also leads to better innovations in that field. The following paper reviews different methods of honeypot network and also gives an insight about the problems that those techniques can face along with their solution. Further it also gives the detail about the most preferred solution among all of the listed techniques in the paper.
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.
2021.
SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
Matsumoto, Marin, Oguchi, Masato.
2021.
Speeding Up Encryption on IoT Devices Using Homomorphic Encryption. 2021 IEEE International Conference on Smart Computing (SMARTCOMP). :270–275.
What do we need to do to protect our personal information? IoT devices such as smartphones, smart watches, and home appliances are widespread. Encryption is required not only to prevent eavesdropping on communications but also to prevent information leakage from cloud services due to unauthorized access. Therefore, attention is being paid to fully homomorphic encryption (FHE) that allows addition and multiplication between ciphertexts. However, FHE with this convenient function has a drawback that the encryption requires huge volume of calculation and the ciphertext is large. Therefore, if FHE is used on a device with limited computational resources such as an IoT device, the load on the IoT device will be too heavy. In this research, we propose a system that can safely and effectively utilize data without imposing a load on IoT devices. In this system, somewhat homomorphic encryption (SHE), which is a lightweight cryptosystem compared with FHE, is combined with FHE. The results of the experiment confirmed that the load on the IoT device can be reduced to approximately 1/1400 compared to load of the system from previous research.
Gupta, Deena Nath, Kumar, Rajendra.
2021.
Sponge based Lightweight Cryptographic Hash Functions for IoT Applications. 2021 International Conference on Intelligent Technologies (CONIT). :1–5.
Hash constructions are used in cryptographic algorithms from very long. Features of Hashes that gives the applications the confidence to use them in security methodologies is “forward secrecy” Forward secrecy comes from one-way hash functions. Examples of earlier hash designs include SHA-3, MD-5, SHA-I, and MAME. Each of these is having their proven record to produce the security for the communication between unconstrained devices. However, this is the era of Internet of Things (IoT) and the requirement of lightweight hash designs are the need of hour. IoT mainly consists of constrained devices. The devices in IoT are having many constrained related to battery power, storage and transmission range. Enabling any security feature in the constrained devices is troublesome. Constrained devices under an IoT environment can work only with less complex and lightweight algorithms. Lightweight algorithms take less power to operate and save a lot of energy of the battery operated devices. SPONGENT, QUARK, HASH-ONE, PHOTON, are some of the well-known lightweight hash designs currently providing security to the IoT devices. In this paper, the authors will present an analysis of the functioning of different lightweight hash designs as well as their suitability to the IoT environment.
Souror, Samia, El-Fishawy, Nawal, Badawy, Mohammed.
2021.
SCKHA: A New Stream Cipher Algorithm Based on Key Hashing and Splitting Technique. 2021 International Conference on Electronic Engineering (ICEEM). :1–7.
Cryptographic algorithms are playing an important role in the information security field. Strong and unbreakable algorithms provide high security and good throughput. The strength of any encryption algorithm is basically based on the degree of difficulty to obtain the encryption key by such cyber-attacks as brute. It is supposed that the bigger the key size, the more difficult it is to compute the key. But increasing the key size will increase both the computational complexity and the processing time of algorithms. In this paper, we proposed a reliable, effective, and more secure symmetric stream cipher algorithm for encryption and decryption called Symmetric Cipher based on Key Hashing Algorithm (SCKHA). The idea of this algorithm is based on hashing and splitting the encryption symmetric key. Hashing the key will hide the encrypted key to prevent any intruder from forging the hash code, and, thus, it satisfies the purpose of security, authentication, and integrity for a message on the network. In addition, the algorithm is secure against a brute-force attack by increasing the resources it takes for testing each possible key. Splitting the hashed value of the encryption key will divide the hashed key into two key chunks. The encryption process performed using such one chunk based on some calculations on the plaintext. This algorithm has three advantages that are represented in computational simplicity, security and efficiency. Our algorithm is characterized by its ability to search on the encrypted data where the plaintext character is represented by two ciphertext characters (symbols).
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.
2021.
SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
Trestioreanu, Lucian, Nita-Rotaru, Cristina, Malhotra, Aanchal, State, Radu.
2021.
SPON: Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay. 2021 IEEE Conference on Communications and Network Security (CNS). :92–100.
Payment systems are a critical component of everyday life in our society. While in many situations payments are still slow, opaque, siloed, expensive or even fail, users expect them to be fast, transparent, cheap, reliable and global. Recent technologies such as distributed ledgers create opportunities for near-real-time, cheaper and more transparent payments. However, in order to achieve a global payment system, payments should be possible not only within one ledger, but also across different ledgers and geographies.In this paper we propose Secure Payments with Overlay Networks (SPON), a service that enables global payments across multiple ledgers by combining the transaction exchange provided by the Interledger protocol with an intrusion-tolerant overlay of relay nodes to achieve (1) improved payment latency, (2) fault-tolerance to benign failures such as node failures and network partitions, and (3) resilience to BGP hijacking attacks. We discuss the design goals and present an implementation based on the Interledger protocol and Spines overlay network. We analyze the resilience of SPON and demonstrate through experimental evaluation that it is able to improve payment latency, recover from path outages, withstand network partition attacks, and disseminate payments fairly across multiple ledgers. We also show how SPON can be deployed to make the communication between different ledgers resilient to BGP hijacking attacks.
Hoarau, Kevin, Tournoux, Pierre Ugo, Razafindralambo, Tahiry.
2021.
Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.
2021.
Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.
The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.