Visible to the public Biblio

Found 16998 results

2023-04-28
Zhu, Tingting, Liang, Jifan, Ma, Xiao.  2022.  Ternary Convolutional LDGM Codes with Applications to Gaussian Source Compression. 2022 IEEE International Symposium on Information Theory (ISIT). :73–78.
We present a ternary source coding scheme in this paper, which is a special class of low density generator matrix (LDGM) codes. We prove that a ternary linear block LDGM code, whose generator matrix is randomly generated with each element independent and identically distributed, is universal for source coding in terms of the symbol-error rate (SER). To circumvent the high-complex maximum likelihood decoding, we introduce a special class of convolutional LDGM codes, called block Markov superposition transmission of repetition (BMST-R) codes, which are iteratively decodable by a sliding window algorithm. Then the presented BMST-R codes are applied to construct a tandem scheme for Gaussian source compression, where a dead-zone quantizer is introduced before the ternary source coding. The main advantages of this scheme are its universality and flexibility. The dead-zone quantizer can choose a proper quantization level according to the distortion requirement, while the LDGM codes can adapt the code rate to approach the entropy of the quantized sequence. Numerical results show that the proposed scheme performs well for ternary sources over a wide range of code rates and that the distortion introduced by quantization dominates provided that the code rate is slightly greater than the discrete entropy.
ISSN: 2157-8117
Yang, Hongna, Zhang, Yiwei.  2022.  On an extremal problem of regular graphs related to fractional repetition codes. 2022 IEEE International Symposium on Information Theory (ISIT). :1566–1571.
Fractional repetition (FR) codes are a special family of regenerating codes with the repair-by-transfer property. The constructions of FR codes are naturally related to combinatorial designs, graphs, and hypergraphs. Given the file size of an FR code, it is desirable to determine the minimum number of storage nodes needed. The problem is related to an extremal graph theory problem, which asks for the minimum number of vertices of an α-regular graph such that any subgraph with k vertices has at most δ edges. In this paper, we present a class of regular graphs for this problem to give the bounds for the minimum number of storage nodes for the FR codes.
ISSN: 2157-8117
Tang, Shibo, Wang, Xingxin, Gao, Yifei, Hu, Wei.  2022.  Accelerating SoC Security Verification and Vulnerability Detection Through Symbolic Execution. 2022 19th International SoC Design Conference (ISOCC). :207–208.
Model checking is one of the most commonly used technique in formal verification. However, the exponential scale state space renders exhaustive state enumeration inefficient even for a moderate System on Chip (SoC) design. In this paper, we propose a method that leverages symbolic execution to accelerate state space search and pinpoint security vulnerabilities. We automatically convert the hardware design to functionally equivalent C++ code and utilize the KLEE symbolic execution engine to perform state exploration through heuristic search. To reduce the search space, we symbolically represent essential input signals while making non-critical inputs concrete. Experiment results have demonstrated that our method can precisely identify security vulnerabilities at significantly lower computation cost.
Abraham, Jacob, Ehret, Alan, Kinsy, Michel A..  2022.  A Compiler for Transparent Namespace-Based Access Control for the Zeno Architecture. 2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED). :1–10.
With memory safety and security issues continuing to plague modern systems, security is rapidly becoming a first class priority in new architectures and competes directly with performance and power efficiency. The capability-based architecture model provides a promising solution to many memory vulnerabilities by replacing plain addresses with capabilities, i.e., addresses and related metadata. A key advantage of the capability model is compatibility with existing code bases. Capabilities can be implemented transparently to a programmer, i.e., without source code changes. Capabilities leverage semantics in source code to describe access permissions but require customized compilers to translate the semantics to their binary equivalent.In this work, we introduce a complete capabilityaware compiler toolchain for such secure architectures. We illustrate the compiler construction with a RISC-V capability-based architecture, called Zeno. As a securityfocused, large-scale, global shared memory architecture, Zeno implements a Namespace-based capability model for accesses. Namespace IDs (NSID) are encoded with an extended addressing model to associate them with access permission metadata elsewhere in the system. The NSID extended addressing model requires custom compiler support to fully leverage the protections offered by Namespaces. The Zeno compiler produces code transparently to the programmer that is aware of Namespaces and maintains their integrity. The Zeno assembler enables custom Zeno instructions which support secure memory operations. Our results show that our custom toolchain moderately increases the binary size compared to nonZeno compilation. We find the minimal overhead incurred by the additional NSID management instructions to be an acceptable trade-off for the memory safety and security offered by Zeno Namespaces.
Moses, William S., Narayanan, Sri Hari Krishna, Paehler, Ludger, Churavy, Valentin, Schanen, Michel, Hückelheim, Jan, Doerfert, Johannes, Hovland, Paul.  2022.  Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler Augmentation. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. :1–18.
Derivatives are key to numerous science, engineering, and machine learning applications. While existing tools generate derivatives of programs in a single language, modern parallel applications combine a set of frameworks and languages to leverage available performance and function in an evolving hardware landscape. We propose a scheme for differentiating arbitrary DAG-based parallelism that preserves scalability and efficiency, implemented into the LLVM-based Enzyme automatic differentiation framework. By integrating with a full-fledged compiler backend, Enzyme can differentiate numerous parallel frameworks and directly control code generation. Combined with its ability to differentiate any LLVM-based language, this flexibility permits Enzyme to leverage the compiler tool chain for parallel and differentiation-specitic optimizations. We differentiate nine distinct versions of the LULESH and miniBUDE applications, written in different programming languages (C++, Julia) and parallel frameworks (OpenMP, MPI, RAJA, Julia tasks, MPI.jl), demonstrating similar scalability to the original program. On benchmarks with 64 threads or nodes, we find a differentiation overhead of 3.4–6.8× on C++ and 5.4–12.5× on Julia.
Li, Zongjie, Ma, Pingchuan, Wang, Huaijin, Wang, Shuai, Tang, Qiyi, Nie, Sen, Wu, Shi.  2022.  Unleashing the Power of Compiler Intermediate Representation to Enhance Neural Program Embeddings. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :2253–2265.
Neural program embeddings have demonstrated considerable promise in a range of program analysis tasks, including clone identification, program repair, code completion, and program synthesis. However, most existing methods generate neural program embeddings di-rectly from the program source codes, by learning from features such as tokens, abstract syntax trees, and control flow graphs. This paper takes a fresh look at how to improve program embed-dings by leveraging compiler intermediate representation (IR). We first demonstrate simple yet highly effective methods for enhancing embedding quality by training embedding models alongside source code and LLVM IR generated by default optimization levels (e.g., -02). We then introduce IRGEN, a framework based on genetic algorithms (GA), to identify (near-)optimal sequences of optimization flags that can significantly improve embedding quality. We use IRGEN to find optimal sequences of LLVM optimization flags by performing GA on source code datasets. We then extend a popular code embedding model, CodeCMR, by adding a new objective based on triplet loss to enable a joint learning over source code and LLVM IR. We benchmark the quality of embedding using a rep-resentative downstream application, code clone detection. When CodeCMR was trained with source code and LLVM IRs optimized by findings of IRGEN, the embedding quality was significantly im-proved, outperforming the state-of-the-art model, CodeBERT, which was trained only with source code. Our augmented CodeCMR also outperformed CodeCMR trained over source code and IR optimized with default optimization levels. We investigate the properties of optimization flags that increase embedding quality, demonstrate IRGEN's generalization in boosting other embedding models, and establish IRGEN's use in settings with extremely limited training data. Our research and findings demonstrate that a straightforward addition to modern neural code embedding models can provide a highly effective enhancement.
Chen, Ligeng, He, Zhongling, Wu, Hao, Xu, Fengyuan, Qian, Yi, Mao, Bing.  2022.  DIComP: Lightweight Data-Driven Inference of Binary Compiler Provenance with High Accuracy. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :112–122.
Binary analysis is pervasively utilized to assess software security and test vulnerabilities without accessing source codes. The analysis validity is heavily influenced by the inferring ability of information related to the code compilation. Among the compilation information, compiler type and optimization level, as the key factors determining how binaries look like, are still difficult to be inferred efficiently with existing tools. In this paper, we conduct a thorough empirical study on the binary's appearance under various compilation settings and propose a lightweight binary analysis tool based on the simplest machine learning method, called DIComP to infer the compiler and optimization level via most relevant features according to the observation. Our comprehensive evaluations demonstrate that DIComP can fully recognize the compiler provenance, and it is effective in inferring the optimization levels with up to 90% accuracy. Also, it is efficient to infer thousands of binaries at a millisecond level with our lightweight machine learning model (1MB).
Li, Zhiyu, Zhou, Xiang, Weng, Wenbin.  2022.  Operator Partitioning and Parallel Scheduling Optimization for Deep Learning Compiler. 2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :205–211.
TVM(tensor virtual machine) as a deep learning compiler which supports the conversion of machine learning models into TVM IR(intermediate representation) and to optimise the generation of high-performance machine code for various hardware platforms. While the traditional approach is to parallelise the cyclic transformations of operators, in this paper we partition the implementation of the operators in the deep learning compiler TVM with parallel scheduling to derive a faster running time solution for the operators. An optimisation algorithm for partitioning and parallel scheduling is designed for the deep learning compiler TVM, where operators such as two-dimensional convolutions are partitioned into multiple smaller implementations and several partitioned operators are run in parallel scheduling to derive the best operator partitioning and parallel scheduling decisions by means of performance estimation. To evaluate the effectiveness of the algorithm, multiple examples of the two-dimensional convolution operator, the average pooling operator, the maximum pooling operator, and the ReLU activation operator with different input sizes were tested on the CPU platform, and the performance of these operators was experimentally shown to be improved and the operators were run speedily.
Kudrjavets, Gunnar, Kumar, Aditya, Nagappan, Nachiappan, Rastogi, Ayushi.  2022.  The Unexplored Terrain of Compiler Warnings. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :283–284.
The authors' industry experiences suggest that compiler warnings, a lightweight version of program analysis, are valuable early bug detection tools. Significant costs are associated with patches and security bulletins for issues that could have been avoided if compiler warnings were addressed. Yet, the industry's attitude towards compiler warnings is mixed. Practices range from silencing all compiler warnings to having a zero-tolerance policy as to any warnings. Current published data indicates that addressing compiler warnings early is beneficial. However, support for this value theory stems from grey literature or is anecdotal. Additional focused research is needed to truly assess the cost-benefit of addressing warnings.
S, Arun, Prasad, Sanjana, Umamaheswari, G.  2022.  Clustering with Cross Layer Design against Spectrum Access Attack in Cognitive Radio Networks. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–4.
Cognitive Radio (CR) is an attractive solution in mobile communication for solving the spectrum scarcity problem. Moreover, security concerns are not yet fully satisfied. This article focuses on attacks such as the Primary user emulation attack (PUE) and the jammer attack. These attacks create anomalous spectrum access thereby disturbing the dynamic spectrum usage in the CR networks. A framework based on cross-layer has been designed effectively to determine these attacks in the CR networks. First, each secondary user will sense the spectrum in the physical layer and construct a feature space. Using the extracted features, the clusters are formed effectively for each user. In the network layer, multipath routing is employed to discover the routes for the secondary user. If the node in the path identifies any spectrum shortage, it will verify that location with the help of constructed cluster. If the node does not belong to any of the clusters, then it will be identified as the attacker node. Simulation results and security analysis are performed using the NS2 simulations, which show improvement in detection of the attacks, decrease in the detection delay, and less route dis-connectivity. The proposed cross-layer framework identifies the anomalous spectrum access attack effectively.
Tashman, Deemah H., Hamouda, Walaa.  2022.  Towards Improving the Security of Cognitive Radio Networks-Based Energy Harvesting. ICC 2022 - IEEE International Conference on Communications. :3436–3441.
In this paper, physical-layer security (PLS) of an underlay cognitive radio network (CRN) operating over cascaded Rayleigh fading channels is examined. In this scenario, a secondary user (SU) transmitter communicates with a SU receiver through a cascaded Rayleigh fading channel while being exposed to eavesdroppers. By harvesting energy from the SU transmitter, a cooperating jammer attempts to ensure the privacy of the transmitted communications. That is, this harvested energy is utilized to generate and spread jamming signals to baffle the information interception at eavesdroppers. Additionally, two scenarios are examined depending on the manner in which eavesdroppers intercept messages; colluding and non-colluding eavesdroppers. These scenarios are compared to determine which poses the greatest risk to the network. Furthermore, the channel cascade effect on security is investigated. Distances between users and the density of non-colluding eavesdroppers are also investigated. Moreover, cooperative jamming-based energy harvesting effectiveness is demonstrated.
Shakhov, Vladimir.  2022.  Sequential Statistical Analysis-Based Method for Attacks Detection in Cognitive Radio Networks. 2022 27th Asia Pacific Conference on Communications (APCC). :663–666.
This Cognitive radio networks are vulnerable to specific intrusions due to the unique cognitive characteristics of these networks. This DoS attacks are known as the Primary User Emulation Attack and the Spectrum Sensing Data Falsification. If the intruder behavior is not statistically identical to the behavior of the primary users, intrusion detection techniques based on observing the energy of the received signals can be used. Both machine learning-based intrusion detection and sequential statistical analysis can be effectively applied. However, in some cases, statistical sequential analysis has some advantages in dealing with such challenges. This paper discusses aspects of using statistical sequential analysis methods to detect attacks in Cognitive radio networks.
Ezhilarasi, I Evelyn, Clement, J Christopher.  2022.  Threat detection in Cognitive radio networks using SHA-3 algorithm. TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON). :1–6.
Cognitive Radio Network makes intelligent use of the spectrum resources. However, spectrum sensing is vulnerable to numerous harmful assaults. To lower the network's performance, hackers attempt to alter the sensed result. In the fusion centre, blockchain technology is used to make broad judgments on spectrum sensing in order to detect and thwart hostile activities. The sensed local results are hashed using the SHA 3 technique. This improves spectrum sensing precision and effectively thwarts harmful attacks. In comparison to other established techniques like equal gain combining, the simulation results demonstrate higher detection probability and sensing precision. Thus, employing Blockchain technology, cognitive radio network security can be significantly enhanced.
Khodeir, Mahmoud A., Alrayahneh, Wesam S..  2022.  Physical-Layer Security in Underlay Cognitive Radio System with Full-Duplex Secondary User over Nakagami-m Fading Channel. 2022 13th International Conference on Information and Communication Systems (ICICS). :495–501.
In this paper, we study an underlay Cognitive Radio (CR) system with energy harvesting over Nakagami-m fading channel. This system consists of a secondary source, a secondary receiver, a primary receiver and a single eavesdropper. The source in the secondary network has one antenna and transmits information to the secondary receiver equipped with two separated antennas to operate in a Full-Duplex (FD) mode. The upper and lower bounds for the Strictly Positive Secrecy Capacity (SPSC) are derived and the numerical results demonstrate that the performance of the proposed system can be improved by increasing the average channel power gain between the source and the destination. Here, the lower and upper bounds are merged to form the exact SPSC when the total interference is below a predefined limit.
Nguyen, Tu-Trinh Thi, Nguyen, Xuan-Xinh, Kha, Ha Hoang.  2022.  Secrecy Outage Performance Analysis for IRS-Aided Cognitive Radio NOMA Networks. 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE). :149–154.
This paper investigates the physical layer security of a cognitive radio (CR) non-orthogonal multiple-access (NOMA) network supported by an intelligent reflecting surface (IRS). In a CR network, a secondary base station (BS) serves a couple of users, i.e., near and far users, via NOMA transmission under eavesdropping from a malicious attacker. It is assumed that the direct transmission link from the BS and far user is absent due to obstacles. Thus, an IRS is utilized to support far user communication, however, the communication links between the IRS and near/primary users are neglected because of heavy attenuation. The exact secrecy outage probability (SOP) for the near user and approximate SOP for the far user are then derived in closed-form by using the Gauss-Chebyshev approach. The accuracy of the derived analytical SOP is then verified through Monte Carlo simulations. The simulation results also provide useful insights on the impacts of the number of IRS reflecting elements and limited interference temperature on the system SOP.
Joon, Ranjita, Tomar, Parul.  2022.  Cognitive Radio Wireless Sensor Networks: A Survey. 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). :216–222.
There has been a significant rise in the use of wireless sensor networks (WSNs) in the past few years. It is evident that WSNs operate in unlicensed spectrum bands [1]. But due to the increasing usage in unlicensed spectrum band this band is getting overcrowded. The recent development of cognitive radio technology [2, 3] has made possible the utilization of licensed spectrum band in an opportunistic manner. This paper studies an introduction to Cognitive Radio Technology, Cognitive Radio Wireless Sensor Networks, its Advantages & Challenges, Cognitive Radio Technology Applications and a comparative analysis of node clustering techniques in CWSN.
Parhizgar, Nazanin, Jamshidi, Ali, Setoodeh, Peyman.  2022.  Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
Khodeir, Mahmoud A., Alquran, Saja M..  2022.  On Secrecy Performance in Underlay Cognitive Radio Networks with EH and TAS over α-μ Channel. 2022 13th International Conference on Information and Communication Systems (ICICS). :463–468.
This paper investigates the secrecy outage performance of Multiple Input Multiple Output (MIMO) secondary nodes for underlay Cognitive Radio Network (CRN) over α–μ fading channel. Here, the proposed system consists of one active eavesdropper and two primary nodes each with a single antenna. The power of the secondary transmitter depends on the harvested energy from the primary transmitter to save more energy and spectrum. Moreover, a Transmit Antenna Selection (TAS) scheme is adopted at the secondary source, while the Maximal Ratio Combining (MRC) technique is employed at the secondary receiver to optimize the quality of the signal. A lower bound closed-form phrase for the secrecy outage performance is derived to demonstrate the effects of the channel parameters. In addition, numerical results illustrate that the number of source transmit antennas, destination received antenna, and the eavesdropper received antenna have significant effects on improving the secrecy performance.
Patil, Siddarama R, Rajashree, Rajashree, Agarkhed, Jayashree.  2022.  A Survey on Byzantine Attack using Secure Cooperative Spectrum Sensing in Cognitive Radio Sensor Network. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :267–270.
The strategy of permanently allocating a frequency band in a wireless communication network to one application has led to exceptionally low utilization of the vacant spectrum. By utilizing the unused licensed spectrum along with the unlicensed spectrum, Cognitive Radio Sensor Network (CRSNs) ensures the efficiency of spectrum management. To utilize the spectrum dynamically it is important to safeguard the spectrum sensing. Cooperative Spectrum Sensing (CSS) is recommended for this task. CSS aims to provide reliable spectrum sensing. However, there are various vulnerabilities experienced in CSS which can influence the performance of the network. In this work, the focus is on the Byzantine attack in CSS and current security solutions available to avoid the Byzantines in CRSN.
2023-04-27
Rafique, Wajid, Hafid, Abdelhakim Senhaji, Cherkaoui, Soumaya.  2022.  Complementing IoT Services Using Software-Defined Information Centric Networks: A Comprehensive Survey. IEEE Internet of Things Journal. 9:23545–23569.
IoT connects a large number of physical objects with the Internet that capture and exchange real-time information for service provisioning. Traditional network management schemes face challenges to manage vast amounts of network traffic generated by IoT services. Software-defined networking (SDN) and information-centric networking (ICN) are two complementary technologies that could be integrated to solve the challenges of different aspects of IoT service provisioning. ICN offers a clean-slate design to accommodate continuously increasing network traffic by considering content as a network primitive. It provides a novel solution for information propagation and delivery for large-scale IoT services. On the other hand, SDN allocates overall network management responsibilities to a central controller, where network elements act merely as traffic forwarding components. An SDN-enabled network supports ICN without deploying ICN-capable hardware. Therefore, the integration of SDN and ICN provides benefits for large-scale IoT services. This article provides a comprehensive survey on software-defined information-centric Internet of Things (SDIC-IoT) for IoT service provisioning. We present critical enabling technologies of SDIC-IoT, discuss its architecture, and describe its benefits for IoT service provisioning. We elaborate on key IoT service provisioning requirements and discuss how SDIC-IoT supports different aspects of IoT services. We define different taxonomies of SDIC-IoT literature based on various performance parameters. Furthermore, we extensively discuss different use cases, synergies, and advances to realize the SDIC-IoT concept. Finally, we present current challenges and future research directions of IoT service provisioning using SDIC-IoT.
Conference Name: IEEE Internet of Things Journal
Spliet, Roy, Mullins, Robert D..  2022.  Sim-D: A SIMD Accelerator for Hard Real-Time Systems. IEEE Transactions on Computers. 71:851–865.
Emerging safety-critical systems require high-performance data-parallel architectures and, problematically, ones that can guarantee tight and safe worst-case execution times. Given the complexity of existing architectures like GPUs, it is unlikely that sufficiently accurate models and algorithms for timing analysis will emerge in the foreseeable future. This motivates our work on Sim-D, a clean-slate approach to designing a real-time data-parallel architecture. Sim-D enforces a predictable execution model by isolating compute- and access resources in hardware. The DRAM controller uninterruptedly transfers tiles of data, requested by entire work-groups. This permits work-groups to be executed as a sequence of deterministic access- and compute phases, scheduling phases from up to two work-groups in parallel. Evaluation using a cycle-accurate timing model shows that Sim-D can achieve performance on par with an embedded-grade NVIDIA TK1 GPU under two conditions: applications refrain from using indirect DRAM transfers into large buffers, and Sim-D's scratchpads provide sufficient bandwidth. Sim-D's design facilitates derivation of safe WCET bounds that are tight within 12.7 percent on average, at an additional average performance penalty of \textbackslashsim∼9.2 percent caused by scheduling restrictions on phases.
Conference Name: IEEE Transactions on Computers
Shenoy, Nirmala, Chandraiah, Shreyas Madapura, Willis, Peter.  2022.  Internet Routing with Auto-Assigned Addresses. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :70–75.
Key challenges faced in the Internet today can be enumerated as follows: (1) complex route discovery mechanisms (2) latency and instability during link or device failure recovery (3) inadequacy in extending routing and addressing to limited domains, (4) complex interworking of multiple routing protocols at border routers. Routing table sizes increase with increasing number of networks indicating a scalability issue. One approach to address this spiraling complexity and performance challenges is to start fresh and re-think Internet routing and addressing. The Expedited Internet Bypass protocol (EIBP) is such a clean slate approach. In the interim, EIBP works in parallel with IP and has no dependency on layer 3 protocols. We demonstrated EIBP for routing and forwarding in an Autonomous system (AS) in our earlier work. In this article, we demonstrate EIBP for inter-AS routing. We compare EIBP's inter-AS operations and performance to Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP) deployed in an intra-AS, inter-AS communications scenario with two AS.
ISSN: 2474-154X
Ahmad, Ashar, Saad, Muhammad, Al Ghamdi, Mohammed, Nyang, DaeHun, Mohaisen, David.  2022.  BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit Trails. IEEE Systems Journal. 16:1367–1378.
Audit trails are critical components in enterprise business applications, typically used for storing, tracking, and auditing data. Entities in the audit trail applications have weak trust boundaries, which expose them to various security risks and attacks. To harden the security and develop secure by design applications, blockchain technology has been recently introduced in the audit trails. Blockchains take a consensus-driven clean slate approach to equip audit trails with secure and transparent data processing, without a trusted intermediary. On a downside, blockchains significantly increase the space-time complexity of the audit trails, leading to high storage costs and low transaction throughput. In this article, we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain systems into layers of codependent hierarchies, thereby reducing the space-time complexity and increasing the throughput. BlockTrail is prototyped on the “practical Byzantine fault tolerance” protocol with a custom-built blockchain. Experiments with BlockTrail show that compared to the conventional schemes, BlockTrail is secure and efficient, with low storage footprint.
Conference Name: IEEE Systems Journal
2023-04-14
Wu, Min-Hao, Huang, Jian-Hung, Chen, Jian-Xin, Wang, Hao-Jyun, Chiu, Chen-Yu.  2022.  Machine Learning to Identify Bitcoin Mining by Web Browsers. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE). :66—69.
In the recent development of the online cryptocurrency mining platform, Coinhive, numerous websites have employed “Cryptojacking.” They may need the unauthorized use of CPU resources to mine cryptocurrency and replace advertising income. Web cryptojacking technologies are the most recent attack in information security. Security teams have suggested blocking Cryptojacking scripts by using a blacklist as a strategy. However, the updating procedure of the static blacklist has not been able to promptly safeguard consumers because of the sharp rise in “Cryptojacking kidnapping”. Therefore, we propose a Cryptojacking identification technique based on analyzing the user's computer resources to combat the assault technology known as “Cryptojacking kidnapping.” Machine learning techniques are used to monitor changes in computer resources such as CPU changes. The experiment results indicate that this method is more accurate than the blacklist system and, in contrast to the blacklist system, manually updates the blacklist regularly. The misuse of online Cryptojacking programs and the unlawful hijacking of users' machines for Cryptojacking are becoming worse. In the future, information security undoubtedly addresses the issue of how to prevent Cryptojacking and abduction. The result of this study helps to save individuals from unintentionally becoming miners.
Salcedo, Mathew David, Abid, Mehdi, Kim, Yoohwan, Jo, Ju-Yeon.  2022.  Evil-Twin Browsers: Using Open-Source Code to Clone Browsers for Malicious Purposes. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0776—0784.
Browsers are one of the most widely used types of software around the world. This prevalence makes browsers a prime target for cyberattacks. To mitigate these threats, users can practice safe browsing habits and take advantage of the security features available to browsers. These protections, however, could be severely crippled if the browser itself were malicious. Presented in this paper is the concept of the evil-twin browser (ETB), a clone of a legitimate browser that looks and behaves identically to the original browser, but discreetly performs other tasks that harm a user's security. To better understand the concept of the evil-twin browser, a prototype ETB named ChroNe was developed. The creation and installation process of ChroN e is discussed in this paper. This paper also explores the motivation behind creating such a browser, examines existing relevant work, inspects the open-source codebase Chromium that assisted in ChroNe's development, and discusses relevant topics like ways to deliver an ETB, the capabilities of an ETB, and possible ways to defend against ETBs.