Visible to the public Biblio

Found 16998 results

2017-11-03
Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., Davies, G..  2016.  Surfacing collaborated networks in dark web to find illicit and criminal content. 2016 IEEE Conference on Intelligence and Security Informatics (ISI). :109–114.
The Tor Network, a hidden part of the Internet, is becoming an ideal hosting ground for illegal activities and services, including large drug markets, financial frauds, espionage, child sexual abuse. Researchers and law enforcement rely on manual investigations, which are both time-consuming and ultimately inefficient. The first part of this paper explores illicit and criminal content identified by prominent researchers in the dark web. We previously developed a web crawler that automatically searched websites on the internet based on pre-defined keywords and followed the hyperlinks in order to create a map of the network. This crawler has demonstrated previous success in locating and extracting data on child exploitation images, videos, keywords and linkages on the public internet. However, as Tor functions differently at the TCP level, and uses socket connections, further technical challenges are faced when crawling Tor. Some of the other inherent challenges for advanced Tor crawling include scalability, content selection tradeoffs, and social obligation. We discuss these challenges and the measures taken to meet them. Our modified web crawler for Tor, termed the “Dark Crawler” has been able to access Tor while simultaneously accessing the public internet. We present initial findings regarding what extremist and terrorist contents are present in Tor and how this content is connected to each other in a mapped network that facilitates dark web crimes. Our results so far indicate the most popular websites in the dark web are acting as catalysts for dark web expansion by providing necessary knowledgebase, support and services to build Tor hidden services and onion websites.
Park, A. J., Beck, B., Fletche, D., Lam, P., Tsang, H. H..  2016.  Temporal analysis of radical dark web forum users. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :880–883.
Extremist groups have turned to the Internet and social media sites as a means of sharing information amongst one another. This research study analyzes forum posts and finds people who show radical tendencies through the use of natural language processing and sentiment analysis. The forum data being used are from six Islamic forums on the Dark Web which are made available for security research. This research project uses a POS tagger to isolate keywords and nouns that can be utilized with the sentiment analysis program. Then the sentiment analysis program determines the polarity of the post. The post is scored as either positive or negative. These scores are then divided into monthly radical scores for each user. Once these time clusters are mapped, the change in opinions of the users over time may be interpreted as rising or falling levels of radicalism. Each user is then compared on a timeline to other radical users and events to determine possible connections or relationships. The ability to analyze a forum for an overall change in attitude can be an indicator of unrest and possible radical actions or terrorism.
Iliou, C., Kalpakis, G., Tsikrika, T., Vrochidis, S., Kompatsiaris, I..  2016.  Hybrid Focused Crawling for Homemade Explosives Discovery on Surface and Dark Web. 2016 11th International Conference on Availability, Reliability and Security (ARES). :229–234.
This work proposes a generic focused crawling framework for discovering resources on any given topic that reside on the Surface or the Dark Web. The proposed crawler is able to seamlessly traverse the Surface Web and several darknets present in the Dark Web (i.e. Tor, I2P and Freenet) during a single crawl by automatically adapting its crawling behavior and its classifier-guided hyperlink selection strategy based on the network type. This hybrid focused crawler is demonstrated for the discovery of Web resources containing recipes for producing homemade explosives. The evaluation experiments indicate the effectiveness of the proposed ap-proach both for the Surface and the Dark Web.
Baravalle, A., Lopez, M. S., Lee, S. W..  2016.  Mining the Dark Web: Drugs and Fake Ids. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). :350–356.
In the last years, governmental bodies have been futilely trying to fight against dark web marketplaces. Shortly after the closing of "The Silk Road" by the FBI and Europol in 2013, new successors have been established. Through the combination of cryptocurrencies and nonstandard communication protocols and tools, agents can anonymously trade in a marketplace for illegal items without leaving any record. This paper presents a research carried out to gain insights on the products and services sold within one of the larger marketplaces for drugs, fake ids and weapons on the Internet, Agora. Our work sheds a light on the nature of the market, there is a clear preponderance of drugs, which accounts for nearly 80% of the total items on sale. The ready availability of counterfeit documents, while they make up for a much smaller percentage of the market, raises worries. Finally, the role of organized crime within Agora is discussed and presented.
Preotiuc-Pietro, Daniel, Carpenter, Jordan, Giorgi, Salvatore, Ungar, Lyle.  2016.  Studying the Dark Triad of Personality Through Twitter Behavior. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :761–770.
Research into the darker traits of human nature is growing in interest especially in the context of increased social media usage. This allows users to express themselves to a wider online audience. We study the extent to which the standard model of dark personality – the dark triad – consisting of narcissism, psychopathy and Machiavellianism, is related to observable Twitter behavior such as platform usage, posted text and profile image choice. Our results show that we can map various behaviors to psychological theory and study new aspects related to social media usage. Finally, we build a machine learning algorithm that predicts the dark triad of personality in out-of-sample users with reliable accuracy.
Collarana, Diego, Lange, Christoph, Auer, Sören.  2016.  FuhSen: A Platform for Federated, RDF-based Hybrid Search. Proceedings of the 25th International Conference Companion on World Wide Web. :171–174.
The increasing amount of structured and semi-structured information available on the Web and in distributed information systems, as well as the Web's diversification into different segments such as the Social Web, the Deep Web, or the Dark Web, requires new methods for horizontal search. FuhSen is a federated, RDF-based, hybrid search platform that searches, integrates and summarizes information about entities from distributed heterogeneous information sources using Linked Data. As a use case, we present scenarios where law enforcement institutions search and integrate data spread across these different Web segments to identify cases of organized crime. We present the architecture and implementation of FuhSen and explain the queries that can be addressed with this new approach.
Truvé, Staffan.  2016.  Temporal Analytics for Predictive Cyber Threat Intelligence. Proceedings of the 25th International Conference Companion on World Wide Web. :867–868.
Recorded Future has developed its Temporal Analytics Engine as a general purpose platform for harvesting and analyzing unstructured text from the open, deep, and dark web, and for transforming that content into a structured representation suitable for different analyses. In this paper we present some of the key components of our system, and show how it has been adapted to the increasingly important domain of cyber threat intelligence. We also describe how our data can be used for predictive analytics, e.g. to predict the likelihood of a product vulnerability being exploited or to assess the maliciousness of an IP address.
Dietrich, Christian J., Rossow, Christian, Pohlmann, Norbert.  2013.  Exploiting Visual Appearance to Cluster and Detect Rogue Software. Proceedings of the 28th Annual ACM Symposium on Applied Computing. :1776–1783.

Rogue software, such as Fake A/V and ransomware, trick users into paying without giving return. We show that using a perceptual hash function and hierarchical clustering, more than 213,671 screenshots of executed malware samples can be grouped into subsets of structurally similar images, reflecting image clusters of one malware family or campaign. Based on the clustering results, we show that ransomware campaigns favor prepay payment methods such as ukash, paysafecard and moneypak, while Fake A/V campaigns use credit cards for payment. Furthermore, especially given the low A/V detection rates of current rogue software – sometimes even as low as 11% – our screenshot analysis approach could serve as a complementary last line of defense.

Kolodenker, Eugene, Koch, William, Stringhini, Gianluca, Egele, Manuel.  2017.  PayBreak: Defense Against Cryptographic Ransomware. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :599–611.

Similar to criminals in the physical world, cyber-criminals use a variety of illegal and immoral means to achieve monetary gains. Recently, malware known as ransomware started to leverage strong cryptographic primitives to hold victims' computer files "hostage" until a ransom is paid. Victims, with no way to defend themselves, are often advised to simply pay. Existing defenses against ransomware rely on ad-hoc mitigations that target the incorrect use of cryptography rather than generic live protection. To fill this gap in the defender's arsenal, we describe the approach, prototype implementation, and evaluation of a novel, automated, and most importantly proactive defense mechanism against ransomware. Our prototype, called PayBreak, effectively combats ransomware, and keeps victims' files safe. PayBreak is based on the insight that secure file encryption relies on hybrid encryption where symmetric session keys are used on the victim computer. PayBreak observes the use of these keys, holds them in escrow, and thus, can decrypt files that would otherwise only be recoverable by paying the ransom. Our prototype leverages low overhead dynamic hooking techniques and asymmetric encryption to realize the key escrow mechanism which allows victims to restore the files encrypted by ransomware. We evaluated PayBreak for its effectiveness against twenty hugely successful families of real-world ransomware, and demonstrate that our system can restore all files that are encrypted by samples from twelve of these families, including the infamous CryptoLocker, and more recent threats such as Locky and SamSam. Finally, PayBreak performs its protection task at negligible performance overhead for common office workloads and is thus ideally suited as a proactive online protection system.

Liao, K., Zhao, Z., Doupe, A., Ahn, G. J..  2016.  Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin. 2016 APWG Symposium on Electronic Crime Research (eCrime). :1–13.

Bitcoin, a decentralized cryptographic currency that has experienced proliferating popularity over the past few years, is the common denominator in a wide variety of cybercrime. We perform a measurement analysis of CryptoLocker, a family of ransomware that encrypts a victim's files until a ransom is paid, within the Bitcoin ecosystem from September 5, 2013 through January 31, 2014. Using information collected from online fora, such as reddit and BitcoinTalk, as an initial starting point, we generate a cluster of 968 Bitcoin addresses belonging to CryptoLocker. We provide a lower bound for CryptoLocker's economy in Bitcoin and identify 795 ransom payments totalling 1,128.40 BTC (\$310,472.38), but show that the proceeds could have been worth upwards of \$1.1 million at peak valuation. By analyzing ransom payment timestamps both longitudinally across CryptoLocker's operating period and transversely across times of day, we detect changes in distributions and form conjectures on CryptoLocker that corroborate information from previous efforts. Additionally, we construct a network topology to detail CryptoLocker's financial infrastructure and obtain auxiliary information on the CryptoLocker operation. Most notably, we find evidence that suggests connections to popular Bitcoin services, such as Bitcoin Fog and BTC-e, and subtle links to other cybercrimes surrounding Bitcoin, such as the Sheep Marketplace scam of 2013. We use our study to underscore the value of measurement analyses and threat intelligence in understanding the erratic cybercrime landscape.

Ahmadian, M. M., Shahriari, H. R..  2016.  2entFOX: A framework for high survivable ransomwares detection. 2016 13th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC). :79–84.

Ransomwares have become a growing threat since 2012, and the situation continues to worsen until now. The lack of security mechanisms and security awareness are pushing the systems into mire of ransomware attacks. In this paper, a new framework called 2entFOX' is proposed in order to detect high survivable ransomwares (HSR). To our knowledge this framework can be considered as one of the first frameworks in ransomware detection because of little publicly-available research in this field. We analyzed Windows ransomwares' behaviour and we tried to find appropriate features which are particular useful in detecting this type of malwares with high detection accuracy and low false positive rate. After hard experimental analysis we extracted 20 effective features which due to two highly efficient ones we could achieve an appropriate set for HSRs detection. After proposing architecture based on Bayesian belief network, the final evaluation is done on some known ransomware samples and unknown ones based on six different scenarios. The result of this evaluations shows the high accuracy of 2entFox in detection of HSRs.

Scaife, N., Carter, H., Traynor, P., Butler, K. R. B..  2016.  CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data. 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). :303–312.

Ransomware is a growing threat that encrypts auser's files and holds the decryption key until a ransom ispaid by the victim. This type of malware is responsible fortens of millions of dollars in extortion annually. Worse still, developing new variants is trivial, facilitating the evasion of manyantivirus and intrusion detection systems. In this work, we presentCryptoDrop, an early-warning detection system that alerts a userduring suspicious file activity. Using a set of behavior indicators, CryptoDrop can halt a process that appears to be tampering witha large amount of the user's data. Furthermore, by combininga set of indicators common to ransomware, the system can beparameterized for rapid detection with low false positives. Ourexperimental analysis of CryptoDrop stops ransomware fromexecuting with a median loss of only 10 files (out of nearly5,100 available files). Our results show that careful analysis ofransomware behavior can produce an effective detection systemthat significantly mitigates the amount of victim data loss.

Moore, C..  2016.  Detecting Ransomware with Honeypot Techniques. 2016 Cybersecurity and Cyberforensics Conference (CCC). :77–81.

Attacks of Ransomware are increasing, this form of malware bypasses many technical solutions by leveraging social engineering methods. This means established methods of perimeter defence need to be supplemented with additional systems. Honeypots are bogus computer resources deployed by network administrators to act as decoy computers and detect any illicit access. This study investigated whether a honeypot folder could be created and monitored for changes. The investigations determined a suitable method to detect changes to this area. This research investigated methods to implement a honeypot to detect ransomware activity, and selected two options, the File Screening service of the Microsoft File Server Resource Manager feature and EventSentry to manipulate the Windows Security logs. The research developed a staged response to attacks to the system along with thresholds when there were triggered. The research ascertained that witness tripwire files offer limited value as there is no way to influence the malware to access the area containing the monitored files.

Cabaj, K., Mazurczyk, W..  2016.  Using Software-Defined Networking for Ransomware Mitigation: The Case of CryptoWall. IEEE Network. 30:14–20.

Currently, different forms of ransomware are increasingly threatening Internet users. Modern ransomware encrypts important user data, and it is only possible to recover it once a ransom has been paid. In this article we show how software-defined networking can be utilized to improve ransomware mitigation. In more detail, we analyze the behavior of popular ransomware - CryptoWall - and, based on this knowledge, propose two real-time mitigation methods. Then we describe the design of an SDN-based system, implemented using OpenFlow, that facilitates a timely reaction to this threat, and is a crucial factor in the case of crypto ransomware. What is important is that such a design does not significantly affect overall network performance. Experimental results confirm that the proposed approach is feasible and efficient.

Mercaldo, F., Nardone, V., Santone, A..  2016.  Ransomware Inside Out. 2016 11th International Conference on Availability, Reliability and Security (ARES). :628–637.

Android is currently the most widely used mobile environment. This trend encourages malware writers to develop specific attacks targeting this platform with threats designed to covertly collect data or financially extort victims, the so-called ransomware. In this paper we use formal methods, in particular model checking, to automatically dissect ransomware samples. Starting from manual inspection of few samples, we define a set of rule in order to check whether the behaviours we find are representative of ransomware functionalities.

Upadhyaya, R., Jain, A..  2016.  Cyber ethics and cyber crime: A deep dwelved study into legality, ransomware, underground web and bitcoin wallet. 2016 International Conference on Computing, Communication and Automation (ICCCA). :143–148.

Future wars will be cyber wars and the attacks will be a sturdy amalgamation of cryptography along with malware to distort information systems and its security. The explosive Internet growth facilitates cyber-attacks. Web threats include risks, that of loss of confidential data and erosion of consumer confidence in e-commerce. The emergence of cyber hack jacking threat in the new form in cyberspace is known as ransomware or crypto virus. The locker bot waits for specific triggering events, to become active. It blocks the task manager, command prompt and other cardinal executable files, a thread checks for their existence every few milliseconds, killing them if present. Imposing serious threats to the digital generation, ransomware pawns the Internet users by hijacking their system and encrypting entire system utility files and folders, and then demanding ransom in exchange for the decryption key it provides for release of the encrypted resources to its original form. We present in this research, the anatomical study of a ransomware family that recently picked up quite a rage and is called CTB locker, and go on to the hard money it makes per user, and its source C&C server, which lies with the Internet's greatest incognito mode-The Dark Net. Cryptolocker Ransomware or the CTB Locker makes a Bitcoin wallet per victim and payment mode is in the form of digital bitcoins which utilizes the anonymity network or Tor gateway. CTB Locker is the deadliest malware the world ever encountered.

Shinde, R., Veeken, P. Van der, Schooten, S. Van, Berg, J. van den.  2016.  Ransomware: Studying transfer and mitigation. 2016 International Conference on Computing, Analytics and Security Trends (CAST). :90–95.

Cybercrimes today are focused over returns, especially in the form of monetary returns. In this paper - through a literature study and conducting interviews for the people victimized by ransomware and a survey with random set of victimized and non-victimized by ransomware - conclusions about the dependence of ransomware on demographics like age and education areshown. Increasing threats due to ease of transfer of ransomware through internet arealso discussed. Finally, low level awarenessamong company professionals is confirmed and reluctance to payment on being a victim is found as a common trait.

Weckstén, M., Frick, J., Sjöström, A., Järpe, E..  2016.  A novel method for recovery from Crypto Ransomware infections. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :1354–1358.

Extortion using digital platforms is an increasing form of crime. A commonly seen problem is extortion in the form of an infection of a Crypto Ransomware that encrypts the files of the target and demands a ransom to recover the locked data. By analyzing the four most common Crypto Ransomwares, at writing, a clear vulnerability is identified; all infections rely on tools available on the target system to be able to prevent a simple recovery after the attack has been detected. By renaming the system tool that handles shadow copies it is possible to recover from infections from all four of the most common Crypto Ransomwares. The solution is packaged in a single, easy to use script.

Bozkaya, Elif, Chowdhury, Kaushik, Canberk, Berk.  2016.  SINR and Reliability Based Hidden Terminal Estimation for Next Generation Vehicular Networks. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :69–76.
Safety applications are currently being developed in next generation vehicular networks to provide road safety. Broadcasting of safety messages unveils the need of reliability assessment since there are no request-to-send (RTS)/clear-to-send (CTS) handshaking and acknowledgment packets in broadcast vehicular communications. Therefore, the reliability of broadcast messages suffer from hidden terminal problem, interference and high mobility. To overcome these challenges, Signal-to-Interference-and-Noise Ratio (SINR) estimation is a key solution so that we can foresee the transmission collisions caused by hidden terminals and prevent its transmissions. Then, we can build a model to improve reliability of broadcast messages. Towards this aim, in this paper, we propose a SINR based hidden terminal estimation model. First, we introduce a method to specify hidden terminals and their transmissions, then we estimate accurate SINR level at the receiver in the near future. Second, we formulate the successfully received packets with a heuristic algorithm and, calculate throughput and hidden terminal radius. Our approach enables significant improvement in the reliability of broadcast vehicular communications.
Weichslgartner, Andreas, Wildermann, Stefan, Götzfried, Johannes, Freiling, Felix, Glaß, Michael, Teich, Jürgen.  2016.  Design-Time/Run-Time Mapping of Security-Critical Applications in Heterogeneous MPSoCs. Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems. :153–162.
Different applications concurrently running on modern MPSoCs can interfere with each other when they use shared resources. This interference can cause side channels, i.e., sources of unintended information flow between applications. To prevent such side channels, we propose a hybrid mapping methodology that attempts to ensure spatial isolation, i.e., a mutually-exclusive allocation of resources to applications in the MPSoC. At design time and as a first step, we compute compact and connected application mappings (called shapes). In a second step, run-time management uses this information to map multiple spatially segregated shapes to the architecture. We present and evaluate a (fast) heuristic and an (exact) SAT-based mapper, demonstrating the viability of the approach.
Hibshi, Hanan.  2016.  Systematic Analysis of Qualitative Data in Security. Proceedings of the Symposium and Bootcamp on the Science of Security. :52–52.
This tutorial will introduce participants to Grounded Theory, which is a qualitative framework to discover new theory from an empirical analysis of data. This form of analysis is particularly useful when analyzing text, audio or video artifacts that lack structure, but contain rich descriptions. We will frame Grounded Theory in the context of qualitative methods and case studies, which complement quantitative methods, such as controlled experiments and simulations. We will contrast the approaches developed by Glaser and Strauss, and introduce coding theory - the most prominent qualitative method for performing analysis to discover Grounded Theory. Topics include coding frames, first- and second-cycle coding, and saturation. We will use examples from security interview scripts to teach participants: developing a coding frame, coding a source document to discover relationships in the data, developing heuristics to resolve ambiguities between codes, and performing second-cycle coding to discover relationships within categories. Then, participants will learn how to discover theory from coded data. Participants will further learn about inter-rater reliability statistics, including Cohen's and Fleiss' Kappa, Krippendorf's Alpha, and Vanbelle's Index. Finally, we will review how to present Grounded Theory results in publications, including how to describe the methodology, report observations, and describe threats to validity.
Gunda, Jagadeesh, Djokic, Sasa, Langella, Roberto, Testa, Alfredo.  2016.  On Convergence of Conventional and Meta-heuristic Methods for Security-constrained OPF Analysis. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :109–111.
Security-constrained optimal power flow (SCOPF) studies are used for assessing network performance during both planning and operational stages. The requirements for increased flexibility and improved security necessitate to use robust and computationally efficient SCOPF methods, which are crucial for "smart grid" applications requiring (close to) real-time network control. Conventional SCOPF methods solve the corresponding nonlinear power flow equations using gradient-based iterative approaches and are computationally efficient, but sensitive to selection of initial values and might suffer from convergence problems. Metaheuristic SCOPF methods are based on various approaches that search over the system state space and do not suffer from convergence problems, but are more computationally demanding. While network planners and operators regularly use conventional SCOPF methods, meta-heuristic methods are rarely implemented in practice, even for off-line analysis during the planning stage. Using as an example the IEEE 30-bus test network, this paper analyses and compares conventional and meta-heuristic methods for security-constrained OPF studies, showing that meta-heuristic methods can be used when conventional methods fail to converge and/or to provide a global optimum solution.
Gambino, Andrew, Kim, Jinyoung, Sundar, S. Shyam, Ge, Jun, Rosson, Mary Beth.  2016.  User Disbelief in Privacy Paradox: Heuristics That Determine Disclosure. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :2837–2843.
We conducted a series of in-depth focus groups wherein users provided rationales for their own online privacy behaviors. Our data suggest that individuals often take action with little thought or evaluation, even showing surprise when confronted with their own behaviors. Our analysis yielded a battery of cognitive heuristics, i.e., mental shortcuts / rules of thumb, that users seem to employ when they disclose or withhold information at the spur of the moment. A total of 4 positive heuristics (promoting disclosure) and 4 negative heuristics (inhibiting disclosure) were discovered. An understanding of these heuristics can be valuable for designing interfaces that promote secure and trustworthy computing.
2017-11-01
Nadi, Sarah, Krüger, Stefan.  2016.  Variability Modeling of Cryptographic Components: Clafer Experience Report. Proceedings of the Tenth International Workshop on Variability Modelling of Software-intensive Systems. :105–112.
Software systems need to use cryptography to protect any sensitive data they collect. However, there are various classes of cryptographic components (e.g., ciphers, digests, etc.), each suitable for a specific purpose. Additionally, each class of such components comes with various algorithms and configurations. Finding the right combination of algorithms and correct settings to use is often difficult. We believe that using variability modeling to model these algorithms, their relationships, and restrictions can help non-experts navigate this complex domain. In this paper, we report on our experience modeling cryptographic components in Clafer, a modeling language that combines feature modeling and meta-modeling. We discuss design decisions we took as well as the challenges we ran into. Our work helps expand variability modeling into new domains and sheds lights on modeling requirements that appear in practice.
Anand, Priya, Ryoo, Jungwoo, Kim, Hyoungshick, Kim, Eunhyun.  2016.  Threat Assessment in the Cloud Environment: A Quantitative Approach for Security Pattern Selection. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :5:1–5:8.
Cloud computing has emerged as a fast-growing technology in the past few years. It provides a great flexibility for storing, sharing and delivering data over the Internet without investing on new technology or resources. In spite of the development and wide array of cloud usage, security perspective of cloud computing still remains its infancy. Security challenges faced by cloud environment becomes more complicated when we include various stakeholders' perspectives. In a cloud environment, security perspectives and requirements are usually designed by software engineers or security experts. Sometimes clients' requirements are either ignored or given a very high importance. In order to implement cloud security by providing equal importance to client organizations, software engineers and security experts, we propose a new methodology in this paper. We use Microsoft's STRIDE-DREAD model to assess threats existing in the cloud environment and also to measure its consequences. Our aim is to rank the threats based on the nature of its severity, and also giving a significant importance for clients' requirements on security perspective. Our methodology would act as a guiding tool for security experts and software engineers to proceed with securing process especially for a private or a hybrid cloud. Once threats are ranked, we provide a link to a well-known security pattern classification. Although we have some security pattern classification schemes in the literature, we need a methodology to select a particular category of patterns. In this paper, we provide a novel methodology to select a set of security patterns for securing a cloud software. This methodology could aid a security expert or a software professional to assess the current vulnerability condition and prioritize by also including client's security requirements in a cloud environment.