Visible to the public Attribution in Scale and Space

TitleAttribution in Scale and Space
Publication TypeConference Paper
Year of Publication2020
AuthorsXu, Shawn, Venugopalan, Subhashini, Sundararajan, Mukund
Conference Name2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Keywordsattribution, composability, Google, Human Behavior, Kernel, Mathematical model, Medical services, Metrics, Perturbation methods, pubcrawl, Task Analysis, Two dimensional displays
AbstractWe study the attribution problem for deep networks applied to perception tasks. For vision tasks, attribution techniques attribute the prediction of a network to the pixels of the input image. We propose a new technique called Blur Integrated Gradients (Blur IG). This technique has several advantages over other methods. First, it can tell at what scale a network recognizes an object. It produces scores in the scale/frequency dimension, that we find captures interesting phenomena. Second, it satisfies the scale-space axioms, which imply that it employs perturbations that are free of artifact. We therefore produce explanations that are cleaner and consistent with the operation of deep networks. Third, it eliminates the need for baseline parameter for Integrated Gradients for perception tasks. This is desirable because the choice of baseline has a significant effect on the explanations. We compare the proposed technique against previous techniques and demonstrate application on three tasks: ImageNet object recognition, Diabetic Retinopathy prediction, and AudioSet audio event identification. Code and examples are at https://github.com/PAIR-code/saliency.
DOI10.1109/CVPR42600.2020.00970
Citation Keyxu_attribution_2020