Visible to the public A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks

TitleA near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks
Publication TypeConference Paper
Year of Publication2021
AuthorsBoukela, Lynda, Zhang, Gongxuan, Yacoub, Meziane, Bouzefrane, Samia
Conference Name2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC)
Date Publishedjun
Keywordsactive learning, Adaptive systems, Autonomous IDS, composability, Deep Learning, Education, incremental learning, Intrusion detection, Metrics, pubcrawl, rendering (computer graphics), resilience, Resiliency, security, telecommunication traffic, Windows Operating System Security
AbstractIntrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained.
DOI10.1109/SPAC53836.2021.9539947
Citation Keyboukela_near-autonomous_2021