CPS Domains

The terms denote engineering domains that have high CPS content.
file

Visible to the public Verifying Continuous-time Stochastic Hybrid Systems via Mori-Zwanzig Model Reduction

Abstract:

Stochastic hybrid systems are a class of stochastic models that incorporates both continuous- and discretestate dynamics. They have wide applications in modeling various processes, such as communication networks [4] and biochemical reactions [6]. In this work, we focus on continuous-time stochastic hybrid systems (CTSHS); specifically, we propose a framework using Metric Interval Temporal Logic (MITL) [1] to describe the systems' behavior and verifying the MITL formulas via model reduction and sampling.

file

Visible to the public Adaptive Management of Large Energy Storage Systems for Vehicle Electrification

Abstract:

Recent progress in battery technology has made it possible to use batteries to power various physical platforms, such as ground/air/water vehicles. These platforms require hundreds/thousands of battery cells to meet their power and energy needs. Of these, automobiles, locomotives, and unmanned air vehicles (UAVs) face the most stringent environmental challenges.

file

Visible to the public Multi-Robot Cyber-Physical System For Assisting Young Developmentally-Delayed Children in Learning to Walk

Abstract:

This project, NSF grant 1329363, is a modular, computationally-distributed multi-robot cyber-physical system (CPS) for assisting young developmentally-delayed children learning to walk. The challenges of assisting young developmentally-delayed children learning to walk are 1) stabilizing medio-lateral body sway, 2) developing gait that exploits energy exchange, and 3) coordinating multiple degrees of freedom.

file

Visible to the public An End-to-end Quality of Time (QoT) Stack for Linux

Abstract:

Commodity operating systems manage time in a best effort fashion, where clock synchronization is performed independently of both application demand and resource constraints. The vision of the RoseLine project is to develop a Quality of Time (QoT) stack for Linux that enables developers to write distributed applications that perform computation with a common sense of time.

file

Visible to the public CPS-VO: Active Resources

Abstract:

The Cyber-Physical Systems Virtual Organization (CPS-VO) was founded by NSF in 2010 to: (i) facilitate and foster interaction and exchanges among CPS PIs and their teams; (ii) enable sharing of artifacts and knowledge generated by the projects with the broader engineering and scientific communities; and (iii) facilitate and foster collaboration and information exchange between CPS researchers and industry.

file

Visible to the public Low-cost Continuous Virtual Energy Audits in Cyber-Physical Building Envelope

Electricity usage of buildings (including offices, malls and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. Buildings are estimated to consume 72% of the total electricity production in the US. Unfortunately, however, 30% of this energy consumption is wasted. Virtual energy assessment is an approach that can optimize building energy efficiency and minimize waste at a low cost with minimal expert intervention.

file

Visible to the public Fault-Tolerant Brain Implantable Cyber-Physical System

Abstract:

Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. We will create a second generation brain-implantable sensing and stimulating device (BISSD) based on CPS principles and practice.

file

Visible to the public Research Platform for Quality of Time (QoT) Stack

Abstract:

Existing platforms are built with a static network connecting microprocessor, radio, clock system, and other components. This static configuration prevents researchers from experimentally validating the trade-offs between the way that clocks are conditioned and distributed, and the performance of the embedded system. In particular, such design decisions have major impact on time synchronization.

file

Visible to the public CRII: CPS: Architecture and Distributed Computation in the Networked Control Paradigm: An Autonomous Grid Example

Abstract:

This project is focused on developing a fundamental understanding of the impact of network delays and data drops using an approach that is applicable to a variety of Cyber-Physical Systems (CPS). An example of such a CPS is the power grid which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources.