Carnegie Mellon University
file
ABSTRACT: Countries vary greatly in the extent to which their computers encounter and host attacks. Empirically identifying factors behind such variation can provide a sound basis for policies to reduce attacks worldwide.
file
Abstract:
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient.
file
Abstract:
This project addresses highly dynamic Cyber-Physical Systems (CPSs) understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of advanced safety systems on passenger cars, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives.
file
Abstract:
The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which model-level control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems.