Transportation Systems Sector
video
Submitted by dabhishe on Thu, 02/11/2016 - 2:19pm
video
Submitted by Domitilla Del Vec... on Thu, 02/11/2016 - 1:57pm
page
Submitted by el_wehby on Wed, 02/10/2016 - 6:16pm
LEAD PI |
TITLE (with link to Poster and Abstract) |
VIDEO |
event
Submitted by Anonymous on Wed, 02/03/2016 - 12:33pm
The "Smart City Security and Privacy Workshop" (SCSP-W 2016)
SCSP-W 2016 will be held in conjunction with CPS Week 2016 in Vienna, Austria. CPS Week is the premier event on Cyber-Physical Systems and brings together academicians, industry experts, and government representatives from around the world.
file
Abstract:
This project is developing a formal methods approach to meet temporal logic specifications in traffic control. Formal methods is an area of computer science that develops efficient techniques for proving the correct operation of systems, such as computer programs and digital circuits, and for designing systems that are correct by construction. We have uncovered two key structural properties of traffic networks that make them amenable to this approach.
file
Abstract:
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient.
file
Abstract:
As part of our CPS project, we have focused on the problem of model repair for cyber-physical systems. This work involves identifying constraints caused due to physical components during revision. We consider four types of constraints cyber-cyber, cyber-physical, physical-cyber and physical-physical. Based on the complexity limitations caused by these constraints we are developing efficient heuristics to mitigate the cost of model repair. We have also focused on extending revision to code level.
file
Abstract:
The goal of this research project is to create a scalable and robust cyber-physical system (CPS) framework for the observation and control of the functional interdependencies between bridge structures (stationary physical systems) and trucks (mobile physical agents). Figure 1 shows the architecture of the proposed CPS framework for the observation and control of truck loads imposed on highway bridges. While many accomplishments have been achieved during the first year of the project, this poster pres
file
Abstract:
The purpose of this research is to develop optimization and control techniques and integrate them with real-time simulation models to achieve load balancing in complex networks. Our application case is the regional freight system. Freight moves on rail and road networks which are also shared by passengers. These networks today work independently, even though they are highly interdependent, and the result is inefficiencies in the form of congestion, pollution, and excess fuel consumption. These inefficiencies are obse
file
Abstract:
The goal of this project is to develop fundamental theory, computationally efficient algorithms, and real-world experiments for the analysis and design of safety-critical cyber-physical transportation systems with human operators. To this end, we propose a modeling, theoretical, and experimental collaborative effort combining human factors, control theory, and computer science. As crashes at traffic intersections account for about 40% of overall vehicle crashes, we will focus on intersection crashes in this project.