CPSPI MTG 2014 Posters, Videos and Abstracts

file

Visible to the public CPS: Synergy: Foundations of Cyber-Physical Infrastructure for Creative Design and Making of Cyber-physical Products

Abstract:

The primary objective in this project is to lay the foundations of a cyber-physical infrastructure for creative design and making of realizable products by addressing fundamental barriers to participation, model- based engineering, and information sharing. The focus is on the following three aims:

file

Visible to the public CPS: Synergy: Distributed Sensing, Learning and Control in Dynamic Environments

Abstract:

The objective of this project is to improve the performance of autonomous systems in dynamic environments, such as disaster recovery, by integrating perception, planning paradigms, learning, and databases. For the next generation of autonomous systems to be truly effective in terms of tangible performance improvements (e.g., long-term operations, complex and rapidly changing environments), a new level of intelligence must be attained.

file

Visible to the public Design and development of a cybernetic exoskeleton for hand-wrist rehabilitation through integration of human passive properties

Abstract:

Robotic devices are excellent candidates for delivering repetitive and intensive practice that can restore functional use of the upper limbs, even years after a stroke. Rehabilitation of the wrist and hand in particular are critical for recovery of function, since hands are the primary interface with the world.

file

Visible to the public Development of Novel Architectures for Control and Diagnosis of Safety-Critical Complex Cyber-Physical Systems

Abstract:

The project is developing novel architectures for control and diagnosis of complex cyber--physical systems subject to stringent performance requirements in terms of safety, resilience, and adaptivity. These ever--increasing demands necessitate the use of formal model--based approaches to synthesize provably--correct feedback controllers.

file

Visible to the public Cyber-Physical Integration for Digital Microfluidic Biochips

Abstract:

The goal of this project is to integrate digital microfluidics systems with thin-film photodetectors in the top plate to realize biochemical target sensing using fluorescence. System control, adaptation, and reconfiguration through software will lead to a general-purpose lab-on-chip computing platform, in the same way as programmable computing devices allow multifunctional capabilities via software on a hardware platform.

file

Visible to the public Cyber-Physical Cloud Computing

Abstract:

Computation advances in physical time, but embedded computing has found value in logical time programming. Likewise, robotic systems can be simplified by programming in logical space, even though robots live and move in physical space. Our tools ask the roboticist to program on a logical abstraction of the physical. The principal new products are two drivers. One handles the problem of keeping the logical model consistent with physical data. The other enables logical control actions to have physical effect.

file

Visible to the public Credible Autocoding and Verification of Embedded Software (CrAVES)

Abstract:

The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems.

file

Visible to the public CrAVES : Credible Autocoding and Verification of Embedded Software

Abstract:

The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which model-level control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems.

file

Visible to the public CPS: Synergy: A Novel Biomechatronic Interface Based on Wearable Dynamic Imaging Sensors

The problem of controlling biomechatronic systems, such as multiarticulating prosthetic hands, involves unique challenges in the science and engineering of Cyber Physical Systems (CPS), requiring integration between computational systems for recognizing human functional activity and intent and controlling prosthetic devices to interact with the physical world. Research on this problem has been limited by the difficulties in noninvasively acquiring robust biosignals that allow intuitive and reliable control of multiple degrees of freedom (DoF).