Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2021-03-30
Shah, P. R., Agarwal, A..  2020.  Cybersecurity Behaviour of Smartphone Users Through the Lens of Fogg Behaviour Model. 2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA). :79—82.

It is now a fact that human is the weakest link in the cybersecurity chain. Many theories from behavioural science like the theory of planned behaviour and protection motivation theory have been used to investigate the factors that affect the cybersecurity behaviour and practices of the end-user. In this paper, the researchers have used Fogg behaviour model (FBM) to study factors affecting the cybersecurity behaviour and practices of smartphone users. This study found that the odds of secure behaviour and practices by respondents with high motivation and high ability were 4.64 times more than the respondents with low motivation and low ability. This study describes how FBM may be used in the design and development of cybersecurity awareness program leading to a behaviour change.

2021-03-29
Erulanova, A., Soltan, G., Baidildina, A., Amangeldina, M., Aset, A..  2020.  Expert System for Assessing the Efficiency of Information Security. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). :355—359.

The paper considers an expert system that provides an assessment of the state of information security in authorities and organizations of various forms of ownership. The proposed expert system allows to evaluate the state of compliance with the requirements of both organizational and technical measures to ensure the protection of information, as well as the level of compliance with the requirements of the information protection system in general. The expert assessment method is used as a basic method for assessing the state of information protection. The developed expert system provides a significant reduction in routine operations during the audit of information security. The results of the assessment are presented quite clearly and provide an opportunity for the leadership of the authorities and organizations to make informed decisions to further improve the information protection system.

2021-01-11
Mihanpour, A., Rashti, M. J., Alavi, S. E..  2020.  Human Action Recognition in Video Using DB-LSTM and ResNet. 2020 6th International Conference on Web Research (ICWR). :133—138.

Human action recognition in video is one of the most widely applied topics in the field of image and video processing, with many applications in surveillance (security, sports, etc.), activity detection, video-content-based monitoring, man-machine interaction, and health/disability care. Action recognition is a complex process that faces several challenges such as occlusion, camera movement, viewpoint move, background clutter, and brightness variation. In this study, we propose a novel human action recognition method using convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks, using only raw video frames. First, deep features are extracted from video frames using a pre-trained CNN architecture called ResNet152. The sequential information of the frames is then learned using the DB-LSTM network, where multiple layers are stacked together in both forward and backward passes of DB-LSTM, to increase depth. The evaluation results of the proposed method using PyTorch, compared to the state-of-the-art methods, show a considerable increase in the efficiency of action recognition on the UCF 101 dataset, reaching 95% recognition accuracy. The choice of the CNN architecture, proper tuning of input parameters, and techniques such as data augmentation contribute to the accuracy boost in this study.

2021-05-13
Ammar, Mahmoud, Crispo, Bruno, Tsudik, Gene.  2020.  SIMPLE: A Remote Attestation Approach for Resource-constrained IoT devices. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :247—258.

Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.

2021-03-09
Razaque, A., Amsaad, F., Almiani, M., Gulsezim, D., Almahameed, M. A., Al-Dmour, A., Khan, M. J., Ganda, R..  2020.  Successes and Failures in Exploring Biometric Algorithms in NIST Open Source Software and Data. 2020 Seventh International Conference on Software Defined Systems (SDS). :231—234.

With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.

2022-09-09
Vosatka, Jason, Stern, Andrew, Hossain, M.M., Rahman, Fahim, Allen, Jeffery, Allen, Monica, Farahmandi, Farimah, Tehranipoor, Mark.  2020.  Confidence Modeling and Tracking of Recycled Integrated Circuits, Enabled by Blockchain. 2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID). :1—3.
The modern electronics supply chain is a globalized marketplace with the increasing threat of counterfeit integrated circuits (ICs) being installed into mission critical systems. A number of methods for detecting counterfeit ICs exist; however, effective test and evaluation (T&E) methods to assess the confidence of detecting recycled ICs are needed. Additionally, methods for the trustworthy tracking of recycled ICs in the supply chain are also needed. In this work, we propose a novel methodology to address the detection and tracking of recycled ICs at each stage of the electronics supply chain. We present a case study demonstrating our assessment model to calculate the confidence levels of authentic and recycled ICs, and to confidently track these types of ICs throughout the electronics supply chain.
2021-02-03
Gillen, R. E., Anderson, L. A., Craig, C., Johnson, J., Columbia, A., Anderson, R., Craig, A., Scott, S. L..  2020.  Design and Implementation of Full-Scale Industrial Control System Test Bed for Assessing Cyber-Security Defenses. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :341—346.
In response to the increasing awareness of the Ethernet-based threat surface of industrial control systems (ICS), both the research and commercial communities are responding with ICS-specific security solutions. Unfortunately, many of the properties of ICS environments that contribute to the extent of this threat surface (e.g. age of devices, inability or unwillingness to patch, criticality of the system) similarly prevent the proper testing and evaluation of these security solutions. Production environments are often too fragile to introduce unvetted technology and most organizations lack test environments that are sufficiently consistent with production to yield actionable results. Cost and space requirements prevent the creation of mirrored physical environments leading many to look towards simulation or virtualization. Examples in literature provide various approaches to building ICS test beds, though most of these suffer from a lack of realism due to contrived scenarios, synthetic data and other compromises. In this paper, we provide a design methodology for building highly realistic ICS test beds for validating cybersecurity defenses. We then apply that methodology to the design and building of a specific test bed and describe the results and experimental use cases.
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
2021-10-04
Abbas Hamdani, Syed Wasif, Waheed Khan, Abdul, Iltaf, Naima, Iqbal, Waseem.  2020.  DTMSim-IoT: A Distributed Trust Management Simulator for IoT Networks. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :491–498.
In recent years, several trust management frame-works and models have been proposed for the Internet of Things (IoT). Focusing primarily on distributed trust management schemes; testing and validation of these models is still a challenging task. It requires the implementation of the proposed trust model for verification and validation of expected outcomes. Nevertheless, a stand-alone and standard IoT network simulator for testing of distributed trust management scheme is not yet available. In this paper, a .NET-based Distributed Trust Management Simulator for IoT Networks (DTMSim-IoT) is presented which enables the researcher to implement any static/dynamic trust management model to compute the trust value of a node. The trust computation will be calculated based on the direct-observation and trust value is updated after every transaction. Transaction history and logs of each event are maintained which can be viewed and exported as .csv file for future use. In addition to that, the simulator can also draw a graph based on the .csv file. Moreover, the simulator also offers to incorporate the feature of identification and mitigation of the On-Off Attack (OOA) in the IoT domain. Furthermore, after identifying any malicious activity by any node in the networks, the malevolent node is added to the malicious list and disseminated in the network to prevent potential On-Off attacks.
2021-04-08
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
2021-04-27
Rashid, N. A. M., Zukri, N. H. A., Zulkifli, Z. A., Awang, N., Buja, A. G..  2020.  A Multi Agent-Based Security Protocol for Securing Password Management Application. 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). :42—45.
Password-based authentication is the most common authentication method for either online or offline system. Password composition policies become too burdensome and put the user in a state of struggle to remember their password. Thus, most of the user save their password on the browser or even list it down in their personal gadgets. Therefore, a multi agent-based password management application have been developed to helps user in keeping their password safely. However, multi-agent system facing security issues such as man in the middle attack, data modification and eavesdropping. This paper proposed a security protocol for multi agent-based architecture in order to reduce potential threats. The security protocol focuess on the authentication of mobile agents, data transmission and the data local protection. The communication channels are secured using cryptography techniques.
2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2021-03-29
John, A., MC, A., Ajayan, A. S., Sanoop, S., Kumar, V. R..  2020.  Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1328—1333.

Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.

2021-02-23
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
2021-04-27
Agirre, I., Onaindia, P., Poggi, T., Yarza, I., Cazorla, F. J., Kosmidis, L., Grüttner, K., Abuteir, M., Loewe, J., Orbegozo, J. M. et al..  2020.  UP2DATE: Safe and secure over-the-air software updates on high-performance mixed-criticality systems. 2020 23rd Euromicro Conference on Digital System Design (DSD). :344–351.
Following the same trend of consumer electronics, safety-critical industries are starting to adopt Over-The-Air Software Updates (OTASU) on their embedded systems. The motivation behind this trend is twofold. On the one hand, OTASU offer several benefits to the product makers and users by improving or adding new functionality and services to the product without a complete redesign. On the other hand, the increasing connectivity trend makes OTASU a crucial cyber-security demand to download latest security patches. However, the application of OTASU in the safety-critical domain is not free of challenges, specially when considering the dramatic increase of software complexity and the resulting high computing performance demands. This is the mission of UP2DATE, a recently launched project funded within the European H2020 programme focused on new software update architectures for heterogeneous high-performance mixed-criticality systems. This paper gives an overview of UP2DATE and its foundations, which seeks to improve existing OTASU solutions by considering safety, security and availability from the ground up in an architecture that builds around composability and modularity.
2021-05-20
Almogbil, Atheer, Alghofaili, Abdullah, Deane, Chelsea, Leschke, Timothy, Almogbil, Atheer, Alghofaili, Abdullah.  2020.  The Accuracy of GPS-Enabled Fitbit Activities as Evidence: A Digital Forensics Study. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :186—189.

Technology is advancing rapidly and with this advancement, it has become apparent that it is nearly impossible to not leave a digital trace when committing a crime. As evidenced by multiple cases handled by law enforcement, Fitbit data has proved to be useful when determining the validity of alibis and in piecing together the timeline of a crime scene. In our paper, experiments testing the accuracy and reliability of GPS-tracked activities logged by the Fitbit Alta tracker and Ionic smartwatch are conducted. Potential indicators of manipulated or altered GPS-tracked activities are identified to help guide digital forensic investigators when handling such Fitbit data as evidence.

2021-05-13
Madanchi, Mehdi, Abolhassani, Bahman.  2020.  Authentication and Key Agreement Based Binary Tree for D2D Group Communication. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Emerging device-to-device (D2D) communication in 5th generation (5G) mobile communication networks and internet of things (loTs) provides many benefits in improving network capabilities such as energy consumption, communication delay and spectrum efficiency. D2D group communication has the potential for improving group-based services including group games and group discussions. Providing security in D2D group communication is the main challenge to make their wide usage possible. Nevertheless, the issue of security and privacy of D2D group communication has been less addressed in recent research work. In this paper, we propose an authentication and key agreement tree group-based (AKATGB) protocol to realize a secure and anonymous D2D group communication. In our protocol, a group of D2D users are first organized in a tree structure, authenticating each other without disclosing their identities and without any privacy violation. Then, D2D users negotiate to set a common group key for establishing a secure communication among themselves. Security analysis and performance evaluation of the proposed protocol show that it is effective and secure.

2021-05-05
Ajayi, Oluwaseyi, Saadawi, Tarek.  2020.  Blockchain-Based Architecture for Secured Cyber-Attack Features Exchange. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :100—107.

Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics' exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.

2021-05-13
Aghabagherloo, Alireza, Mohajeri, Javad, Salmasizadeh, Mahmoud, Feghhi, Mahmood Mohassel.  2020.  An Efficient Anonymous Authentication Scheme Using Registration List in VANETs. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Nowadays, Vehicular Ad hoc Networks (VANETs) are popularly known as they can reduce traffic and road accidents. These networks need several security requirements, such as anonymity, data authentication, confidentiality, traceability and cancellation of offending users, unlinkability, integrity, undeniability and access control. Authentication of the data and sender are most important security requirements in these networks. So many authentication schemes have been proposed up to now. One of the well-known techniques to provide users authentication in these networks is the authentication based on the smartcard (ASC). In this paper, we propose an ASC scheme that not only provides necessary security requirements such as anonymity, traceability and unlinkability in the VANETs but also is more efficient than the other schemes in the literatures.

2021-03-09
Adhikari, M., Panda, P. K., Chattopadhyay, S., Majumdar, S..  2020.  A Novel Group-Based Authentication and Key Agreement Protocol for IoT Enabled LTE/LTE–A Network. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :168—172.

This paper deals with novel group-based Authentication and Key Agreement protocol for Internet of Things(IoT) enabled LTE/LTE-A network to overcome the problems of computational overhead, complexity and problem of heterogeneous devices, where other existing methods are lagging behind in attaining security requirements and computational overhead. In this work, two Groups are created among Machine Type Communication Devices (MTCDs) on the basis of device type to reduce complexity and problems of heterogeneous devices. This paper fulfills all the security requirements such as preservation, mutual authentication, confidentiality. Bio-metric authentication has been used to enhance security level of the network. The security and performance analysis have been verified through simulation results. Moreover, the performance of the proposed Novel Group-Based Authentication and key Agreement(AKA) Protocol is analyzed with other existing IoT enabled LTE/LTE-A protocol.

Sibahee, M. A. A., Lu, S., Abduljabbar, Z. A., Liu, E. X., Ran, Y., Al-ashoor, A. A. J., Hussain, M. A., Hussien, Z. A..  2020.  Promising Bio-Authentication Scheme to Protect Documents for E2E S2S in IoT-Cloud. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—6.

Document integrity and origin for E2E S2S in IoTcloud have recently received considerable attention because of their importance in the real-world fields. Maintaining integrity could protect decisions made based on these message/image documents. Authentication and integrity solutions have been conducted to recognise or protect any modification in the exchange of documents between E2E S2S (smart-to-smart). However, none of the proposed schemes appear to be sufficiently designed as a secure scheme to prevent known attacks or applicable to smart devices. We propose a robust scheme that aims to protect the integrity of documents for each users session by integrating HMAC-SHA-256, handwritten feature extraction using a local binary pattern, one-time random pixel sequence based on RC4 to randomly hide authentication codes using LSB. The proposed scheme can provide users with one-time bio-key, robust message anonymity and a disappearing authentication code that does not draw the attention of eavesdroppers. Thus, the scheme improves the data integrity for a users messages/image documents, phase key agreement, bio-key management and a one-time message/image document code for each users session. The concept of stego-anonymity is also introduced to provide additional security to cover a hashed value. Finally, security analysis and experimental results demonstrate and prove the invulnerability and efficiency of the proposed scheme.

2021-08-17
Arivarasi, A., Ramesh, P..  2020.  Review of Source Location Security Protection using Trust Authentication Schema. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :215—222.
Wireless Sensor Networks promises the wireless network tools that does not require any stable infrastructure. Routing is the most important effect of network operation for the extended data rates within the network. Route discovery and route search sent the required packets from the target node source. However, good data transmission is also a threatening task in networks that provide efficient and energy-efficient routing. Various research activities focus on the topology control, source location privacy optimization and effective routing improvement in WSN. Wherein the existing security solutions both routing protocols and source location solutions disrupt the self-organizing nature of wireless sensor networks. Therefore, large overhead signatures are displayed and digitally verified by the requesting node. The cloud-based and routing based schemes have provided efficient security but there are a lot of obstacles for source data and travel path information security in the WSN network. This study is dedicated to calculate the desired number of deployments for sensor nodes in a given area once the selected metric achieves a certain level of coverage, while maintaining wireless connectivity in the network. A trusted node authentication scheme in wireless sensor network reduces the communication between nodes in a secure data transmission network, where shared cryptography is established all adjacent to the sensor node. Route discovery and retransmission increases the network overhead and increases the average end-to-end delay of the network in the conventional systems. This results in higher time complexity, communication overhead and less security of constrained sensor network resources.
2021-10-04
Sayed, Ammar Ibrahim El, Aziz, Mahmoud Abdel, Azeem, Mohamed Hassan Abdel.  2020.  Blockchain Decentralized IoT Trust Management. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1–6.
IoT adds more flexibility in many areas of applications to makes it easy to monitor and manage data instantaneously. However, IoT has many challenges regarding its security and storage issues. Moreover, the third-party trusting agents of IoT devices do not support sufficient security level between the network peers. This paper proposes improving the trust, processing power, and storage capability of IoT in distributed system topology by adopting the blockchain approach. An application, IoT Trust Management (ITM), is proposed to manage the trust of the shared content through the blockchain network, e.g., supply chain. The essential key in ITM is the trust management of IoT devices data are done using peer to peer (P2P), i.e., no third-party. ITM is running on individual python nodes and interact with frontend applications creating decentralized applications (DApps). The IoT data shared and stored in a ledger, which has the IoT device published details and data. ITM provides a higher security level to the IoT data shared on the network, such as unparalleled security, speed, transparency, cost reduction, check data, and Adaptability.
2021-08-31
Zarzour, Hafed, Al shboul, Bashar, Al-Ayyoub, Mahmoud, Jararweh, Yaser.  2020.  A convolutional neural network-based reviews classification method for explainable recommendations. 2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–5.
Recent advances in information filtering have resulted in effective recommender systems that are able to provide online personalized recommendations to millions of users from all over the world. However, most of these systems ignore the explanation purpose while producing recommendations with high-quality results. Moreover, the classification of reviews given to users as explanations is not fully exploited in previous studies. In this paper, we develop a convolutional neural network-based reviews classification method for explainable recommendation systems. The convolutional neural network is used to extract the reviews features for predicting whether the reviews provided as explanations are positive or negative. Based on such additional information, users can understand not only why certain items are recommended for them but also get support to know the nature of such explanations. We conduct experiments on a dataset from Amazon. The experimental results show that our method outperforms state-of-the-art methods.