Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2021-03-09
Ishak, Z., Rajendran, N., Al-Sanjary, O. I., Razali, N. A. Mat.  2020.  Secure Biometric Lock System for Files and Applications: A Review. 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). :23–28.

A biometric system is a developing innovation which is utilized in different fields like forensics and security system. Finger recognition is the innovation that confirms the personality of an individual which relies upon the way that everybody has unique fingerprints. Fingerprint biometric systems are smaller in size, simple to utilize and have low power. This proposed study focuses on fingerprint biometric systems and how such a system would be implemented. If implemented, this system would have multifactor authentication strategies and improvised features based on encryption algorithms. The scanner that will be used is Biometric Fingerprint Sensor that is connected to system which determines the authorization and access control rights. All user access information is gathered by the system where the administrators can retrieve and analyse the information. This system has function of being up to date with the data changes like displaying the name of the individual for controlling security of the system.

2021-07-08
Talbot, Joshua, Pikula, Przemek, Sweetmore, Craig, Rowe, Samuel, Hindy, Hanan, Tachtatzis, Christos, Atkinson, Robert, Bellekens, Xavier.  2020.  A Security Perspective on Unikernels. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—7.
Cloud-based infrastructures have grown in popularity over the last decade leveraging virtualisation, server, storage, compute power and network components to develop flexible applications. The requirements for instantaneous deployment and reduced costs have led the shift from virtual machine deployment to containerisation, increasing the overall flexibility of applications and increasing performances. However, containers require a fully fleshed operating system to execute, increasing the attack surface of an application. Unikernels, on the other hand, provide a lightweight memory footprint, ease of application packaging and reduced start-up times. Moreover, Unikernels reduce the attack surface due to the self-contained environment only enabling low-level features. In this work, we provide an exhaustive description of the unikernel ecosystem; we demonstrate unikernel vulnerabilities and further discuss the security implications of Unikernel-enabled environments through different use-cases.
2021-02-08
Aigner, A., Khelil, A..  2020.  A Security Qualification Matrix to Efficiently Measure Security in Cyber-Physical Systems. 2020 32nd International Conference on Microelectronics (ICM). :1–4.

Implementations of Cyber-Physical Systems (CPS), like the Internet of Things, Smart Factories or Smart Grid gain more and more impact in their fields of application, as they extend the functionality and quality of the offered services significantly. However, the coupling of safety-critical embedded systems and services of the cyber-space domain introduce many new challenges for system engineers. Especially, the goal to achieve a high level of security throughout CPS presents a major challenge. However, it is necessary to develop and deploy secure CPS, as vulnerabilities and threats may lead to a non- or maliciously modified functionality of the CPS. This could ultimately cause harm to life of involved actors, or at least sensitive information can be leaked or lost. Therefore, it is essential that system engineers are aware of the level of security of the deployed CPS. For this purpose, security metrics and security evaluation frameworks can be utilized, as they are able to quantitatively express security, based on different measurements and rules. However, existing security scoring solutions may not be able to generate accurate security scores for CPS, as they insufficiently consider the typical CPS characteristics, like the communication of heterogeneous systems of physical- and cyber-space domain in an unpredictable manner. Therefore, we propose a security analysis framework, called Security Qualification Matrix (SQM). The SQM is capable to analyses multiple attacks on a System-of-Systems level simultaneously. With this approach, dependencies, potential side effects and the impact of mitigation concepts can quickly be identified and evaluated.

2021-07-27
Driss, Maha, Aljehani, Amani, Boulila, Wadii, Ghandorh, Hamza, Al-Sarem, Mohammed.  2020.  Servicing Your Requirements: An FCA and RCA-Driven Approach for Semantic Web Services Composition. IEEE Access. 8:59326—59339.
The evolution of Service-Oriented Computing (SOC) provides more efficient software development methods for building and engineering new value-added service-based applications. SOC is a computing paradigm that relies on Web services as fundamental elements. Research and technical advancements in Web services composition have been considered as an effective opportunity to develop new service-based applications satisfying complex requirements rapidly and efficiently. In this paper, we present a novel approach enhancing the composition of semantic Web services. The novelty of our approach, as compared to others reported in the literature, rests on: i) mapping user's/organization's requirements with Business Process Modeling Notation (BPMN) and semantic descriptions using ontologies, ii) considering functional requirements and also different types of non-functional requirements, such as quality of service (QoS), quality of experience (QoE), and quality of business (QoBiz), iii) using Formal Concept Analysis (FCA) technique to select the optimal set of Web services, iv) considering composability levels between sequential Web services using Relational Concept Analysis (RCA) technique to decrease the required adaptation efforts, and finally, v) validating the obtained service-based applications by performing an analytical technique, which is the monitoring. The approach experimented on an extended version of the OWLS-TC dataset, which includes more than 10830 Web services descriptions from various domains. The obtained results demonstrate that our approach allows to successfully and effectively compose Web services satisfying different types of user's functional and non-functional requirements.
Loreti, Daniela, Artioli, Marcello, Ciampolini, Anna.  2020.  Solving Linear Systems on High Performance Hardware with Resilience to Multiple Hard Faults. 2020 International Symposium on Reliable Distributed Systems (SRDS). :266–275.
As large-scale linear equation systems are pervasive in many scientific fields, great efforts have been done over the last decade in realizing efficient techniques to solve such systems, possibly relying on High Performance Computing (HPC) infrastructures to boost the performance. In this framework, the ever-growing scale of supercomputers inevitably increases the frequency of faults, making it a crucial issue of HPC application development.A previous study [1] investigated the possibility to enhance the Inhibition Method (IMe) -a linear systems solver for dense unstructured matrices-with fault tolerance to single hard errors, i.e. failures causing one computing processor to stop.This article extends [1] by proposing an efficient technique to obtain fault tolerance to multiple hard errors, which may occur concurrently on different processors belonging to the same or different machines. An improved parallel implementation is also proposed, which is particularly suitable for HPC environments and moves towards the direction of a complete decentralization. The theoretical analysis suggests that the technique (which does not require check pointing, nor rollback) is able to provide fault tolerance to multiple faults at the price of a small overhead and a limited number of additional processors to store the checksums. Experimental results on a HPC architecture validate the theoretical study, showing promising performance improvements w.r.t. a popular fault-tolerant solving technique.
2021-10-21
Amelkin, Victor, Vohra, Rakesh.  2020.  Strategic Formation and Reliability of Supply Chain Networks. Proceedings of the 21st ACM Conference on Economics and Computation. :77–78.
We study the incentives that independent self-interested agents have in forming a resilient supply chain network in the face of disruptions and competition. Competing suppliers are subject to yield uncertainty and congestion. Competing retailers make sourcing decisions based on price and reliability. Under yield uncertainty only, retailers–-benefiting from supply variance–-concentrate their links on a single supplier, counter to the idea that they should mitigate yield uncertainty by multi-sourcing. When congestion is added, the resulting networks resemble bipartite expanders known to be resilient, thus, providing the first example of endogenously formed resilient supply chains.
2020-12-21
Jithish, J., Sankaran, S., Achuthan, K..  2020.  Towards Ensuring Trustworthiness in Cyber-Physical Systems: A Game-Theoretic Approach. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :626–629.

The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.

2020-04-06
Alamleh, Hosam, AlQahtani, Ali Abdullah S..  2020.  Two Methods for Authentication Using Variable Transmission Power Patterns. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0355–0358.
In the last decade, the adoption of wireless systems has increased. These systems allow multiple devices to send data wirelessly using radio waves. Moreover, in some applications, authentication is done wirelessly by exchanging authentication data over the air as in wireless locks and keyless entry systems. On the other hand, most of the wireless devices today can control the radio frequency transmission power to optimize the system's performance and minimize interference. In this paper, we explore the possibility of modulating the radio frequency transmission power in wireless systems for authentication purposes and using it for source authentication. Furthermore, we propose two system models that perform authentication using variable power transmission patterns. Then, we discuss possible applications. Finally, we implement and test a prototype system using IEEE 802.11 (Wi-Fi) devices.
2021-07-27
Beyza, Jesus, Bravo, Victor M., Garcia-Paricio, Eduardo, Yusta, Jose M., Artal-Sevil, Jesus S..  2020.  Vulnerability and Resilience Assessment of Power Systems: From Deterioration to Recovery via a Topological Model based on Graph Theory. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). 4:1–6.
Traditionally, vulnerability is the level of degradation caused by failures or disturbances, and resilience is the ability to recover after a high-impact event. This paper presents a topological procedure based on graph theory to evaluate the vulnerability and resilience of power grids. A cascading failures model is developed by eliminating lines both deliberately and randomly, and four restoration strategies inspired by the network approach are proposed. In the two cases, the degradation and recovery of the electrical infrastructure are quantified through four centrality measures. Here, an index called flow-capacity is proposed to measure the level of network overload during the iterative processes. The developed sequential framework was tested on a graph of 600 nodes and 1196 edges built from the 400 kV high-voltage power system in Spain. The conclusions obtained show that the statistical graph indices measure different topological aspects of the network, so it is essential to combine the results to obtain a broader view of the structural behaviour of the infrastructure.
2021-03-29
Amin, A. H. M., Abdelmajid, N., Kiwanuka, F. N..  2020.  Identity-of-Things Model using Composite Identity on Permissioned Blockchain Network. 2020 Seventh International Conference on Software Defined Systems (SDS). :171—176.

The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.

2021-08-18
Tsavos, Marios, Sklavos, Nicolas, Alexiou, George Ph..  2020.  Lightweight Security Data Streaming, Based on Reconfigurable Logic, for FPGA Platform. 2020 23rd Euromicro Conference on Digital System Design (DSD). :277—280.
Alongside the rapid expansion of Internet of Things (IoT), and network evolution (5G, 6G technologies), comes the need for security of higher level and less hardware demanding modules. New cryptographic systems are developed, in order to satisfy the special needs of security, that have emerged in modern applications. In this paper, a novel lightweight data streaming system, is proposed, which operates in alternative modes. Each one of them, performs efficiently as one of three in total, stream ciphering modules. The operation of the proposed system, is based on reconfigurable logic. It aims at a lower hardware utilization and good performance, at the same time. In addition, in order to have a fair and detailed comparison, a second one design is also integrated and introduced. This one proposes a conventional architecture, consisting of the same three stream ciphering modes, implemented on the same device, as separate operation modules. The FPGA synthesis results prove that the proposed reconfigurable design achieves to minimize the area resources, from 18% to 30%, compared to the conventional one, while maintaining high performance values, for the supported modes.
2021-03-29
Anell, S., Gröber, L., Krombholz, K..  2020.  End User and Expert Perceptions of Threats and Potential Countermeasures. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :230—239.

Experts often design security and privacy technology with specific use cases and threat models in mind. In practice however, end users are not aware of these threats and potential countermeasures. Furthermore, mis-conceptions about the benefits and limitations of security and privacy technology inhibit large-scale adoption by end users. In this paper, we address this challenge and contribute a qualitative study on end users' and security experts' perceptions of threat models and potential countermeasures. We follow an inductive research approach to explore perceptions and mental models of both security experts and end users. We conducted semi-structured interviews with 8 security experts and 13 end users. Our results suggest that in contrast to security experts, end users neglect acquaintances and friends as attackers in their threat models. Our findings highlight that experts value technical countermeasures whereas end users try to implement trust-based defensive methods.

2020-10-01
Dario Niermann, Andreas Lüdtke.  2020.  Measuring Driver Discomfort in Autonomous Vehicles. International Conference on Intelligent Human Systems Integration.

Autonomous driving is getting more common and easily accessible with rapid improvements in technology. Prospective buyers of autonomous vehicles need to adapt to this technology equally rapidly to feel comfortable in them. However, this is not always the case, since taking away control from the user often correlates with loss of comfort. Detecting uncomfortable and stressful situations while driving could improve driving quality and overall acceptance of autonomous vehicles through adaption of driving style, interface and other methods. In this paper, we test a range of methods, which measure the discomfort of a user of an autonomous vehicle in real-time. We propose a portable set of sensors that measure heart rate, skin conductance, sitting position, g-forces and subjective discomfort. Preliminary results will be examined and next steps will be discussed.

2020-07-08
Li, Nianyu, Adepu, Sridhar, Kang, Eunsuk, Garlan, David.  2020.  Explanations for Human-on-the-loop: A Probabilistic Model Checking Approach. In Proceedings of the 15th International Symposium on Software Engineering for Adaptive and Self-managing Systems (SEAMS) - Virtual.

Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not available to the system and can detect problems that the system is unaware of. One way of achieving this is by placing the human operator on the loop – i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make such interaction effective, explanation is sometimes helpful to allow the human to understand why the system is making certain decisions and calibrate confidence from the human perspective. However, explanations come with costs in terms of delayed actions and the possibility that a human may make a bad judgement. Hence, it is not always obvious whether explanations will improve overall utility and, if so, what kinds of explanation to provide to the operator. In this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a dynamic adaptation approach that leverages a probabilistic reasoning technique to determine when the explanation should be used in order to improve overall system utility.

2020-10-01
Alexander Trende, Franziska Roesner, Cornelia Schmidt, Martin Fränzle.  2020.  Improving the detection of user uncertainty in automated overtaking maneuvers by combining contextual, physiological and individualized user data. International Conference on Human-Computer Interaction.

Highly automated driving will be a novel experience for many users and may cause uncertainty and discomfort for them. An efficient real-time detection of user uncertainty during automated driving may trigger adaptation strategies, which could enhance the driving experience and subsequently the acceptance of highly automated driving. In this study, we compared three different models to classify a user’s uncertainty regarding an automated vehicle’s capabilities and traffic safety during overtaking maneuvers based on experimental data from a driving-simulator study. By combining physiological, contextual and user-specific data, we trained three different deep neural networks to classify user uncertainty during overtaking maneuvers on different sets of input features. We evaluated the models based on metrics like the classification accuracy and F1 Scores. For a purely context-based model, we used features such as the Time-Headway and Time-To-Collision of cars on the opposing lane. We demonstrate how the addition of user heart rate and related physiological features can improve the classification accuracy compared to a purely context-based uncertainty model. The third model included user-specific features to account for inter-user differences regarding uncertainty in highly automated vehicles. We argue that a combination of physiological, contextual and user-specific information is important for an effectual uncertainty detection that accounts for inter-user differences.

2021-08-11
Sulayman K. Sowe, Martin Fränzle, Jan-Patrick Osterloh, Alexander Trende, Lars Weber, Andreas Lüdtke.  2020.  Challenges for Integrating Humans into Vehicular Cyber-Physical Systems. Software Engineering and Formal Methods. 12226:20–26.
Advances in Vehicular Cyber-Physical Systems (VCPS) are the primary enablers of the shift from no automation to fully autonomous vehicles (AVs). One of the impacts of this shift is to develop safe AVs in which most or all of the functions of the human driver are replaced with an intelligent system. However, while some progress has been made in equipping AVs with advanced AI capabilities, VCPS designers are still faced with the challenge of designing trustworthy AVs that are in sync with the unpredictable behaviours of humans. In order to address this challenge, we present a model that describes how a Human Ambassador component can be integrated into the overall design of a new generation of VCPS. A scenario is presented to demonstrate how the model can work in practice. Formalisation and co-simulation challenges associated with integrating the Human Ambassador component and future work we are undertaking are also discussed.
2020-07-12
Adam Petz.  2020.  An Infrastructure for Faithful Execution of Remote Attestation Protocols. Hot Topics in Science of Security (HoTSoS’20).
2021-08-11
Amjad Ibrahim, Alexander Pretschner.  2020.  From Checking to Inference: Actual Causality Computations as Optimization Problems. Automated Technology for Verification and Analysis - 18th International Symposium, {ATVA} 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. 12302:343–359.
2021-03-09
Coblenz, Michael, Aldrich, Jonathan, Myers, Brad A., Sunshine, Joshua.  2020.  Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian ACM Journals: Proceedings of the ACM on Programming Languages. 4

Some blockchain programs (smart contracts) have included serious security vulnerabilities. Obsidian is a new typestate-oriented programming language that uses a strong type system to rule out some of these vulnerabilities. Although Obsidian was designed to promote usability to make it as easy as possible to write programs, strong type systems can cause a language to be difficult to use. In particular, ownership, typestate, and assets, which Obsidian uses to provide safety guarantees, have not seen broad adoption together in popular languages and result in significant usability challenges. We performed an empirical study with 20 participants comparing Obsidian to Solidity, which is the language most commonly used for writing smart contracts today. We observed that Obsidian participants were able to successfully complete more of the programming tasks than the Solidity participants. We also found that the Solidity participants commonly inserted asset-related bugs, which Obsidian detects at compile time.

Coblenz, Michael, Oei, Reed, Etzel, Tyler, Koronkevich, Paulette, Baker, Miles, Bloem, Yannick, Myers, Brad A., Aldrich, Jonathan, Sunshine, Joshua.  2020.  Obsidian: Typestate and Assets for Safer Blockchain Programming. ACM Journals: ACM Transactions on Programming Languages and Systems. 42

Blockchain platforms are coming into use for processing critical transactions among participants who have not established mutual trust. Many blockchains are programmable, supporting smart contracts, which maintain persistent state and support transactions that transform the state. Unfortunately, bugs in many smart contracts have been exploited by hackers. Obsidian is a novel programming language with a type system that enables static detection of bugs that are common in smart contracts today. Obsidian is based on a core calculus, Silica, for which we proved type soundness. Obsidian uses typestate to detect improper state manipulation and uses linear types to detect abuse of assets. We integrated a permissions system that encodes a notion of ownership to allow for safe, flexible aliasing. We describe two case studies that evaluate Obsidian’s applicability to the domains of parametric insurance and supply chain management, finding that Obsidian’s type system facilitates reasoning about high-level states and ownership of resources. We compared our Obsidian implementation to a Solidity implementation, observing that the Solidity implementation requires much boilerplate checking and tracking of state, whereas Obsidian does this work statically.

2020-10-08
Akond Rahman, Effat Farhana, Laurie Williams.  2020.  The ‘as code’ activities: development anti-patterns for infrastructure as code. Empirical Software Engineering . 25(3467)

Context:

The ‘as code’ suffix in infrastructure as code (IaC) refers to applying software engineering activities, such as version control, to maintain IaC scripts. Without the application of these activities, defects that can have serious consequences may be introduced in IaC scripts. A systematic investigation of the development anti-patterns for IaC scripts can guide practitioners in identifying activities to avoid defects in IaC scripts. Development anti-patterns are recurring development activities that relate with defective IaC scripts.

Goal:

The goal of this paper is to help practitioners improve the quality of infrastructure as code (IaC) scripts by identifying development activities that relate with defective IaC scripts.

Methodology:

We identify development anti-patterns by adopting a mixed-methods approach, where we apply quantitative analysis with 2,138 open source IaC scripts and conduct a survey with 51 practitioners.

Findings:

We observe five development activities to be related with defective IaC scripts from our quantitative analysis. We identify five development anti-patterns namely, ‘boss is not around’, ‘many cooks spoil’, ‘minors are spoiler’, ‘silos’, and ‘unfocused contribution’.

Conclusion:

Our identified development anti-patterns suggest the importance of ‘as code’ activities in IaC because these activities are related to quality of IaC scripts.

2021-08-11
Gallenmüller, Sebastian, Naab, Johannes, Adam, Iris, Carle, Georg.  2020.  5G QoS: Impact of Security Functions on Latency. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Network slicing is considered a key enabler to 5th Generation (5G) communication networks. Mobile network operators may deploy network slices-complete logical networks customized for specific services expecting a certain Quality of Service (QoS). New business models like Network Slice-as-a-Service offerings to customers from vertical industries require negotiated Service Level Agreements (SLA), and network providers need automated enforcement mechanisms to assure QoS during instantiation and operation of slices. In this paper, we focus on ultra-reliable low-latency communication (URLLC). We propose a software architecture for security functions based on off-the-shelf hardware and open-source software and demonstrate, through a series of measurements, that the strict requirements of URLLC services can be achieved. As a real-world example, we perform our experiments using the intrusion prevention system (IPS) Snort to demonstrate the impact of security functions on latency. Our findings lead to the creation of a model predicting the system load that still meets the URLLC latency requirement. We fully disclose the artifacts presented in this paper including pcap traces, measurement tools, and plotting scripts at https://gallenmu.github.io/low-latency.
2021-01-25
Mazlisham, M. H., Adnan, S. F. Syed, Isa, M. A. Mat, Mahad, Z., Asbullah, M. A..  2020.  Analysis of Rabin-P and RSA-OAEP Encryption Scheme on Microprocessor Platform. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :292–296.

This paper presents an analysis of Rabin-P encryption scheme on microprocessor platform in term of runtime and energy consumption. A microprocessor is one of the devices utilized in the Internet of Things (IoT) structure. Therefore, in this work, the microprocessor selected is the Raspberry Pi that is powered with a smaller version of the Linux operating system for embedded devices, the Raspbian OS. A comparative analysis is then conducted for Rabin-p and RSA-OAEP cryptosystem in the Raspberry Pi setup. A conclusion can be made that Rabin-p performs faster in comparison to the RSA-OAEP cryptosystem in the microprocessor platform. Rabin-p can improve decryption efficiency by using only one modular exponentiation while produces a unique message after the decryption process.

2021-01-22
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., Boutaba, R..  2020.  ATMoS: Autonomous Threat Mitigation in SDN using Reinforcement Learning. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Machine Learning has revolutionized many fields of computer science. Reinforcement Learning (RL), in particular, stands out as a solution to sequential decision making problems. With the growing complexity of computer networks in the face of new emerging technologies, such as the Internet of Things and the growing complexity of threat vectors, there is a dire need for autonomous network systems. RL is a viable solution for achieving this autonomy. Software-defined Networking (SDN) provides a global network view and programmability of network behaviour, which can be employed for security management. Previous works in RL-based threat mitigation have mostly focused on very specific problems, mostly non-sequential, with ad-hoc solutions. In this paper, we propose ATMoS, a general framework designed to facilitate the rapid design of RL applications for network security management using SDN. We evaluate our framework for implementing RL applications for threat mitigation, by showcasing the use of ATMoS with a Neural Fitted Q-learning agent to mitigate an Advanced Persistent Threat. We present the RL model's convergence results showing the feasibility of our solution for active threat mitigation.
2021-01-25
Abbas, M. S., Mahdi, S. S., Hussien, S. A..  2020.  Security Improvement of Cloud Data Using Hybrid Cryptography and Steganography. 2020 International Conference on Computer Science and Software Engineering (CSASE). :123–127.
One of the significant advancements in information technology is Cloud computing, but the security issue of data storage is a big problem in the cloud environment. That is why a system is proposed in this paper for improving the security of cloud data using encryption, information concealment, and hashing functions. In the data encryption phase, we implemented hybrid encryption using the algorithm of AES symmetric encryption and the algorithm of RSA asymmetric encryption. Next, the encrypted data will be hidden in an image using LSB algorithm. In the data validation phase, we use the SHA hashing algorithm. Also, in our suggestion, we compress the data using the LZW algorithm before hiding it in the image. Thus, it allows hiding as much data as possible. By using information concealment technology and mixed encryption, we can achieve strong data security. In this paper, PSNR and SSIM values were calculated in addition to the graph to evaluate the image masking performance before and after applying the compression process. The results showed that PSNR values of stego-image are better for compressed data compared to data before compression.