Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2021-06-02
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.
2021-08-31
Amjath, M.I.M., Senthooran, V..  2020.  Secure Communication Using Steganography in IoT Environment. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:114—119.
IoT is an emerging technology in modern world of communication. As the usage of IoT devices is increasing in day to day life, the secure data communication in IoT environment is the major challenge. Especially, small sized Single-Board Computers (SBCs) or Microcontrollers devices are widely used to transfer data with another in IoT. Due to the less processing power and storage capabilities, the data acquired from these devices must be transferred very securely in order to avoid some ethical issues. There are many cryptography approaches are applied to transfer data between IoT devices, but there are obvious chances to suspect encrypted messages by eavesdroppers. To add more secure data transfer, steganography mechanism is used to avoid the chances of suspicion as another layer of security. Based on the capabilities of IoT devices, low complexity images are used to hide the data with different hiding algorithms. In this research study, the secret data is encoded through QR code and embedded in low complexity cover images by applying image to image hiding fashion. The encoded image is sent to the receiving device via the network. The receiving device extracts the QR code from image using secret key then decoded the original data. The performance measure of the system is evaluated by the image quality parameters mainly Peak Signal to Noise Ratio (PSNR), Normalized Coefficient (NC) and Security with maintaining the quality of contemporary IoT system. Thus, the proposed method hides the precious information within an image using the properties of QR code and sending it without any suspicion to attacker and competes with the existing methods in terms of providing more secure communication between Microcontroller devices in IoT environment.
2021-05-25
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
2021-09-07
Sudugala, A.U, Chanuka, W.H, Eshan, A.M.N, Bandara, U.C.S, Abeywardena, K.Y.  2020.  WANHEDA: A Machine Learning Based DDoS Detection System. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:380–385.
In today's world computer communication is used almost everywhere and majority of them are connected to the world's largest network, the Internet. There is danger in using internet due to numerous cyber-attacks which are designed to attack Confidentiality, Integrity and Availability of systems connected to the internet. One of the most prominent threats to computer networking is Distributed Denial of Service (DDoS) Attack. They are designed to attack availability of the systems. Many users and ISPs are targeted and affected regularly by these attacks. Even though new protection technologies are continuously proposed, this immense threat continues to grow rapidly. Most of the DDoS attacks are undetectable because they act as legitimate traffic. This situation can be partially overcome by using Intrusion Detection Systems (IDSs). There are advanced attacks where there is no proper documented way to detect. In this paper authors present a Machine Learning (ML) based DDoS detection mechanism with improved accuracy and low false positive rates. The proposed approach gives inductions based on signatures previously extracted from samples of network traffic. Authors perform the experiments using four distinct benchmark datasets, four machine learning algorithms to address four of the most harmful DDoS attack vectors. Authors achieved maximum accuracy and compared the results with other applicable machine learning algorithms.
2021-08-12
Abbas, Syed Ghazanfar, Husnain, Muhammad, Fayyaz, Ubaid Ullah, Shahzad, Farrukh, Shah, Ghalib A., Zafar, Kashif.  2020.  IoT-Sphere: A Framework to Secure IoT Devices from Becoming Attack Target and Attack Source. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1409.
In this research we propose a framework that will strengthen the IoT devices security from dual perspectives; avoid devices to become attack target as well as a source of an attack. Unlike traditional devices, IoT devices are equipped with insufficient host-based defense system and a continuous internet connection. All time internet enabled devices with insufficient security allures the attackers to use such devices and carry out their attacks on rest of internet. When plethora of vulnerable devices become source of an attack, intensity of such attacks increases exponentially. Mirai was one of the first well-known attack that exploited large number of vulnerable IoT devices, that bring down a large part of Internet. To strengthen the IoT devices from dual security perspective, we propose a two step framework. Firstly, confine the communication boundary of IoT devices; IoT-Sphere. A sphere of IPs that are allowed to communicate with a device. Any communication that violates the sphere will be blocked at the gateway level. Secondly, only allowed communication will be evaluated for potential attacks and anomalies using advance detection engines. To show the effectiveness of our proposed framework, we perform couple of attacks on IoT devices; camera and google home and show the feasibility of IoT-Sphere.
2021-03-29
Begaj, S., Topal, A. O., Ali, M..  2020.  Emotion Recognition Based on Facial Expressions Using Convolutional Neural Network (CNN). 2020 International Conference on Computing, Networking, Telecommunications Engineering Sciences Applications (CoNTESA). :58—63.

Over the last few years, there has been an increasing number of studies about facial emotion recognition because of the importance and the impact that it has in the interaction of humans with computers. With the growing number of challenging datasets, the application of deep learning techniques have all become necessary. In this paper, we study the challenges of Emotion Recognition Datasets and we also try different parameters and architectures of the Conventional Neural Networks (CNNs) in order to detect the seven emotions in human faces, such as: anger, fear, disgust, contempt, happiness, sadness and surprise. We have chosen iCV MEFED (Multi-Emotion Facial Expression Dataset) as the main dataset for our study, which is relatively new, interesting and very challenging.

2022-10-20
Elharrouss, Omar, Almaadeed, Noor, Al-Maadeed, Somaya.  2020.  An image steganography approach based on k-least significant bits (k-LSB). 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :131—135.
Image steganography is the operation of hiding a message into a cover image. the message can be text, codes, or image. Hiding an image into another is the proposed approach in this paper. Based on LSB coding, a k-LSB-based method is proposed using k least bits to hide the image. For decoding the hidden image, a region detection operation is used to know the blocks contains the hidden image. The resolution of stego image can be affected, for that, an image quality enhancement method is used to enhance the image resolution. To demonstrate the effectiveness of the proposed approach, we compare it with some of the state-of-the-art methods.
2021-04-27
Saroliya, A., Mondal, J., Agrawal, M..  2020.  A Solution for Secured Content Transferring in between Multiple Hosts within P2P Enabled Intranet. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3). :1—3.
Peer to peer file transferring is always a better approach for sharing the contents among multiple nodes when they are in same logical network. Sometimes when a peer leaves the network and its resources key is handed-over to other neighbors (may be adjacent peer) there is always high risk for transferring of related content. In this paper a solution has been implemented through which peers can share files with another peer in a secure manner over P2P enabled intra-network. The data of Peers are located in two different folders namely- PUBLIC and PRIVATE. For a PRIVATE file, the permission from the owner will be desired to retrieve the file at the receiving-end peer. This enables users to restrict the outflow of files. The main advantage of this application is that there is no need of global network (internetwork) and a centralized server.
2021-06-30
Aswal, Kiran, Dobhal, Dinesh C., Pathak, Heman.  2020.  Comparative analysis of machine learning algorithms for identification of BOT attack on the Internet of Vehicles (IoV). 2020 International Conference on Inventive Computation Technologies (ICICT). :312—317.
In this digital era, technology is upgrading day by day and becoming more agile and intelligent. Smart devices and gadgets are now being used to find solutions to complex problems in various domains such as health care, industries, entertainment, education, etc. The Transport system, which is the biggest challenge for any governing authority of a state, is also not untouched with this development. There are numerous challenges and issues with the existing transport system, which can be addressed by developing intelligent and autonomous vehicles. The existing vehicles can be upgraded to use sensors and the latest communication techniques. The advancements in the Internet of Things (IoT) have the potential to completely transform the existing transport system to a more advanced and intelligent transport system that is the Internet of Vehicles (IoV). Due to the connectivity with the Internet, the Internet of Vehicles (IoV) is exposed to various security threats. Security is the primary issue, which requires to be addressed for success and adoption of the IoV. In this paper, the applicability of machine learning based solutions to address the security issue of IoV is analyzed. The performance of six machine-learning algorithms to detect Bot threats is validated by the k-fold cross-validation method in python.
2021-01-20
Rashid, A., Siddique, M. J., Ahmed, S. M..  2020.  Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—9.

Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.

2021-02-03
Adil, M., Khan, R., Ghani, M. A. Nawaz Ul.  2020.  Preventive Techniques of Phishing Attacks in Networks. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—8.

Internet is the most widely used technology in the current era of information technology and it is embedded in daily life activities. Due to its extensive use in everyday life, it has many applications such as social media (Face book, WhatsApp, messenger etc.,) and other online applications such as online businesses, e-counseling, advertisement on websites, e-banking, e-hunting websites, e-doctor appointment and e-doctor opinion. The above mentioned applications of internet technology makes things very easy and accessible for human being in limited time, however, this technology is vulnerable to various security threats. A vital and severe threat associated with this technology or a particular application is “Phishing attack” which is used by attacker to usurp the network security. Phishing attacks includes fake E-mails, fake websites, fake applications which are used to steal their credentials or usurp their security. In this paper, a detailed overview of various phishing attacks, specifically their background knowledge, and solutions proposed in literature to address these issues using various techniques such as anti-phishing, honey pots and firewalls etc. Moreover, installation of intrusion detection systems (IDS) and intrusion detection and prevention system (IPS) in the networks to allow the authentic traffic in an operational network. In this work, we have conducted end use awareness campaign to educate and train the employs in order to minimize the occurrence probability of these attacks. The result analysis observed for this survey was quite excellent by means of its effectiveness to address the aforementioned issues.

2021-05-20
Antonio, Elbren, Fajardo, Arnel, Medina, Ruji.  2020.  Tracking Browser Fingerprint using Rule Based Algorithm. 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). :225—229.

Browsers collects information for better user experience by allowing JavaScript's and other extensions. Advertiser and other trackers take advantage on this useful information to tracked users across the web from remote devices on the purpose of individual unique identifications the so-called browser fingerprinting. Our work explores the diversity and stability of browser fingerprint by modifying the rule-based algorithm. Browser fingerprint rely only from the gathered data through browser, it is hard to tell that this piece of information still the same when upgrades and or downgrades are happening to any browsers and software's without user consent, which is stability and diversity are the most important usage of generating browser fingerprint. We implemented device fingerprint to identify consenting visitors in our website and evaluate individual devices attributes by calculating entropy of each selected attributes. In this research, it is noted that we emphasize only on data collected through a web browser by employing twenty (20) attributes to identify promising high value information to track how device information evolve and consistent in a period of time, likewise, we manually selected device information for evaluation where we apply the modified rules. Finally, this research is conducted and focused on the devices having the closest configuration and device information to test how devices differ from each other after several days of using on the basis of individual user configurations, this will prove in our study that every device is unique.

2021-09-16
Al-Jody, Taha, Holmes, Violeta, Antoniades, Alexandros, Kazkouzeh, Yazan.  2020.  Bearicade: Secure Access Gateway to High Performance Computing Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1420–1427.
Cyber security is becoming a vital part of many information technologies and computing systems. Increasingly, High-Performance Computing systems are used in scientific research, academia and industry. High-Performance Computing applications are specifically designed to take advantage of the parallel nature of High-Performance Computing systems. Current research into High-Performance Computing systems focuses on the improvements in software development, parallel algorithms and computer systems architecture. However, there are no significant efforts in developing common High-Performance Computing security standards. Security of the High-Performance Computing resources is often an add-on to existing varied institutional policies that do not take into account additional requirements for High-Performance Computing security. Also, the users' terminals or portals used to access the High-Performance Computing resources are frequently insecure or they are being used in unprotected networks. In this paper we present Bearicade - a Data-driven Security Orchestration Automation and Response system. Bearicade collects data from the HPC systems and its users, enabling the use of Machine Learning based solutions to address current security issues in the High-Performance Computing systems. The system security is achieved through monitoring, analysis and interpretation of data such as users' activity, server requests, devices used and geographic locations. Any anomaly in users' behaviour is detected using machine learning algorithms, and would be visible to system administrators to help mediate the threats. The system was tested on a university campus grid system by administrators and users. Two case studies, Anomaly detection of user behaviour and Classification of Malicious Linux Terminal Command, have demonstrated machine learning approaches in identifying potential security threats. Bearicade's data was used in the experiments. The results demonstrated that detailed information is provided to the HPC administrators to detect possible security attacks and to act promptly.
2021-04-08
Nguyen, Q. N., Lopez, J., Tsuda, T., Sato, T., Nguyen, K., Ariffuzzaman, M., Safitri, C., Thanh, N. H..  2020.  Adaptive Caching for Beneficial Content Distribution in Information-Centric Networking. 2020 International Conference on Information Networking (ICOIN). :535–540.
Currently, little attention has been carried out to address the feasibility of in-network caching in Information-Centric Networking (ICN) for the design and real-world deployment of future networks. Towards this line, in this paper, we propose a beneficial caching scheme in ICN by storing no more than a specific number of replicas for each content. Particularly, to realize an optimal content distribution for deploying caches in ICN, a content can be cached either partially or as a full-object corresponding to its request arrival rate and data traffic. Also, we employ a utility-based replacement in each content node to keep the most recent and popular content items in the ICN interconnections. The evaluation results show that the proposal improves the cache hit rate and cache diversity considerably, and acts as a beneficial caching approach for network and service providers in ICN. Specifically, the proposed caching mechanism is easy to deploy, robust, and relevant for the content-based providers by enabling them to offer users high Quality of Service (QoS) and gain benefits at the same time.
2021-02-22
Abdelaal, M., Karadeniz, M., Dürr, F., Rothermel, K..  2020.  liteNDN: QoS-Aware Packet Forwarding and Caching for Named Data Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–9.
Recently, named data networking (NDN) has been introduced to connect the world of computing devices via naming data instead of their containers. Through this strategic change, NDN brings several new features to network communication, including in-network caching, multipath forwarding, built-in multicast, and data security. Despite these unique features of NDN networking, there exist plenty of opportunities for continuing developments, especially with packet forwarding and caching. In this context, we introduce liteNDN, a novel forwarding and caching strategy for NDN networks. liteNDN comprises a cooperative forwarding strategy through which NDN routers share their knowledge, i.e. data names and interfaces, to optimize their packet forwarding decisions. Subsequently, liteNDN leverages that knowledge to estimate the probability of each downstream path to swiftly retrieve the requested data. Additionally, liteNDN exploits heuristics, such as routing costs and data significance, to make proper decisions about caching normal as well as segmented packets. The proposed approach has been extensively evaluated in terms of the data retrieval latency, network utilization, and the cache hit rate. The results showed that liteNDN, compared to conventional NDN forwarding and caching strategies, achieves much less latency while reducing the unnecessary traffic and caching activities.
2020-12-14
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
2021-04-27
Samuel, J., Aalab, K., Jaskolka, J..  2020.  Evaluating the Soundness of Security Metrics from Vulnerability Scoring Frameworks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :442—449.

Over the years, a number of vulnerability scoring frameworks have been proposed to characterize the severity of known vulnerabilities in software-dependent systems. These frameworks provide security metrics to support decision-making in system development and security evaluation and assurance activities. When used in this context, it is imperative that these security metrics be sound, meaning that they can be consistently measured in a reproducible, objective, and unbiased fashion while providing contextually relevant, actionable information for decision makers. In this paper, we evaluate the soundness of the security metrics obtained via several vulnerability scoring frameworks. The evaluation is based on the Method for DesigningSound Security Metrics (MDSSM). We also present several recommendations to improve vulnerability scoring frameworks to yield more sound security metrics to support the development of secure software-dependent systems.

2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Scoring System to Efficiently Measure Security in Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1141—1145.
The importance of Cyber-Physical Systems (CPS) gains more and more weight in our daily business and private life. Although CPS build the backbone for major trends, like Industry 4.0 and connected vehicles, they also propose many new challenges. One major challenge can be found in achieving a high level of security within such highly connected environments, in which an unpredictable number of heterogeneous systems with often-distinctive characteristics interact with each other. In order to develop high-level security solutions, system designers must eventually know the current level of security of their specification. To this end, security metrics and scoring frameworks are essential, as they quantitatively express security of a given design or system. However, existing solutions may not be able to handle the proposed challenges of CPS, as they mainly focus on one particular system and one specific attack. Therefore, we aim to elaborate a security scoring mechanism, which can efficiently be used in CPS, while considering all essential information. We break down each system within the CPS into its core functional blocks and analyze a variety of attacks in terms of exploitability, scalability of attacks, as well as potential harm to targeted assets. With this approach, we get an overall assessment of security for the whole CPS, as it integrates the security-state of all interacting systems. This allows handling the presented complexity in CPS in a more efficient way, than existing solutions.
2021-02-23
Wöhnert, S.-J., Wöhnert, K. H., Almamedov, E., Skwarek, V..  2020.  Trusted Video Streams in Camera Sensor Networks. 2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC). :17—24.

Proof of integrity in produced video data by surveillance cameras requires active forensic methods such as signatures, otherwise authenticity and integrity can be comprised and data becomes unusable e. g. for legal evidence. But a simple file- or stream-signature loses its validity when the stream is cut in parts or by separating data and signature. Using the principles of security in distributed systems similar to those of blockchain and distributed ledger technologies (BC/DLT), a chain which consists of the frames of a video which frame hash values will be distributed among a camera sensor network is presented. The backbone of this Framechain within the camera sensor network will be a camera identity concept to ensure accountability, integrity and authenticity according to the extended CIA triad security concept. Modularity by secure sequences, autarky in proof and robustness against natural modulation of data are the key parameters of this new approach. It allows the standalone data and even parts of it to be used as hard evidence.

2021-06-28
Latha Ch., Mary, Bazil Raj, A.A., Abhikshit, L..  2020.  Design and Implementation of a Secure Physical Unclonable Function In FPGA. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1083–1089.
A Field Programmable Gate Array (FPGA) is a digital Integrated Circuit made up of interconnected functional blocks, which can be programmed by the end-user to perform required logic functions. As FPGAs are re-programmable, partially re-configurable and have lowertime to market, FPGA has become a vital component in the field of electronics. FPGAs are undergoing many security issues as the adversaries are trying to make profits by replicating the original design, without any investment. The major security issues are cloning, counterfeiting, reverse engineering, Physical tampering, and insertion of malicious components, etc. So, there is a need for security of FPGAs. A Secret key must be embedded in an IC, to provide identification and authentication to it. Physical Unclonable Functions (PUFs) can provide these secret keys, by using the physical properties of the chip. These physical properties are not reproducible even by the manufacturer. Hence the responses produced by the PUF are unique for every individual chip. The method of generating unique binary signatures helps in cryptographic key generation, digital rights management, Intellectual Property (IP) protection, IC counterfeit prevention, and device authentication. The PUFs are very promising in signature generation in the field of hardware security. In this paper, the secret binary responses is generated with the help of a delay based Ring Oscillator PUF, which does not use a clock circuit in its architecture.
2021-08-02
Abdul Basit Ur Rahim, Muhammad, Duan, Qi, Al-Shaer, Ehab.  2020.  A Formal Analysis of Moving Target Defense. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1802—1807.
Static system configuration provides a significant advantage for the adversaries to discover the assets and launch attacks. Configuration-based moving target defense (MTD) reverses the cyber warfare asymmetry by mutating certain configuration parameters to disrupt the attack planning or increase the attack cost significantly. In this research, we present a methodology for the formal verification of MTD techniques. We formally modeled MTD techniques and verified them against constraints. We use Random Host Mutation (RHM) as a case study for MTD formal verification. The RHM transparently mutates the IP addresses of end-hosts and turns into untraceable moving targets. We apply the formal methodology to verify the correctness, safety, mutation, mutation quality, and deadlock-freeness of RHM using the model checking tool. An adversary is also modeled to validate the effectiveness of the MTD technique. Our experimentation validates the scalability and feasibility of the formal verification methodology.
2021-02-15
Av, N., Kumar, N. A..  2020.  Image Encryption Using Genetic Algorithm and Bit-Slice Rotation. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Cryptography is a powerful means of delivering information in a secure manner. Over the years, many image encryption algorithms have been proposed based on the chaotic system to protect the digital image against cryptography attacks. In chaotic encryption, it jumbles the image to vary the framework of the image. This makes it difficult for the attacker to retrieve the original image. This paper introduces an efficient image encryption algorithm incorporating the genetic algorithm, bit plane slicing and bit plane rotation of the digital image. The digital image is sliced into eight planes and each plane is well rotated to give a fully encrypted image after the application of the Genetic Algorithm on each pixel of the image. This makes it less prone to attacks. For decryption, we perform the operations in the reverse order. The performance of this algorithm is measured using various similarity measures like Structural Similarity Index Measure (SSIM). The results exhibit that the proposed scheme provides a stronger level of encryption and an enhanced security level.
2021-05-18
Alresheedi, Mohammed T..  2020.  Improving the Confidentiality of VLC Channels: Physical-Layer Security Approaches. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1–5.
Visible light communication (VLC) is considered as an emerging system for wireless indoor multimedia communications. As any wireless communication system, its channels are open and reachable to both licensed and unlicensed users owing to the broadcast character of visible-light propagation in public areas or multiple-user scenarios. In this work, we consider the physical-layer security approaches for VLC to mitigate this limitation. The physical-layer security approaches can be divided into two categories: keyless security and key-based security approaches. In the last category, recently, the authors introduced physical-layer key-generation approaches for optical orthogonal frequency division multiplexing (OFDM) systems. In these approaches, the cyclic prefix (CP) samples are exploited for key generation. In this paper, we study the effect of the length of key space and order of modulation on the security level, BER performance, and key-disagreement-rate (KDR) of the introduced key-based security approaches. From the results, our approaches are more efficient in higher order of modulation as the KDR decreases with the increase of order of modulation.
2021-11-29
Albó, Laia, Beardsley, Marc, Amarasinghe, Ishari, Hernández-Leo, Davinia.  2020.  Individual versus Computer-Supported Collaborative Self-Explanations: How Do Their Writing Analytics Differ? 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :132–134.
Researchers have demonstrated the effectiveness of self-explanations (SE) as an instructional practice and study strategy. However, there is a lack of work studying the characteristics of SE responses prompted by collaborative activities. In this paper, we use writing analytics to investigate differences between SE text responses resulting from individual versus collaborative learning activities. A Coh-Metrix analysis suggests that students in the collaborative SE activity demonstrated a higher level of comprehension. Future research should explore how writing analytics can be incorporated into CSCL systems to support student performance of SE activities.
2020-12-21
Samuel, C., Alvarez, B. M., Ribera, E. Garcia, Ioulianou, P. P., Vassilakis, V. G..  2020.  Performance Evaluation of a Wormhole Detection Method using Round-Trip Times and Hop Counts in RPL-Based 6LoWPAN Networks. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
The IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) has been standardized to support IP over lossy networks. RPL (Routing Protocol for Low-Power and Lossy Networks) is the common routing protocol for 6LoWPAN. Among various attacks on RPL-based networks, the wormhole attack may cause severe network disruption and is one of the hardest to detect. We have designed and implemented in ContikiOS a wormhole detection technique for 6LoWPAN, that uses round-trip times and hop counts. In addition, the performance of this technique has been evaluated in terms of power, CPU, memory, and communication overhead.