Biblio

Found 2508 results

Filters: First Letter Of Last Name is D  [Clear All Filters]
2021-09-16
Du, Xin, Tang, Songtao, Lu, Zhihui, Wet, Jie, Gai, Keke, Hung, Patrick C.K..  2020.  A Novel Data Placement Strategy for Data-Sharing Scientific Workflows in Heterogeneous Edge-Cloud Computing Environments. 2020 IEEE International Conference on Web Services (ICWS). :498–507.
The deployment of datasets in the heterogeneous edge-cloud computing paradigm has received increasing attention in state-of-the-art research. However, due to their large sizes and the existence of private scientific datasets, finding an optimal data placement strategy that can minimize data transmission as well as improve performance, remains a persistent problem. In this study, the advantages of both edge and cloud computing are combined to construct a data placement model that works for multiple scientific workflows. Apparently, the most difficult research challenge is to provide a data placement strategy to consider shared datasets, both within individual and among multiple workflows, across various geographically distributed environments. According to the constructed model, not only the storage capacity of edge micro-datacenters, but also the data transfer between multiple clouds across regions must be considered. To address this issue, we considered the characteristics of this model and identified the factors that are causing the transmission delay. The authors propose using a discrete particle swarm optimization algorithm with differential evolution (DE-DPSO) to distribute dataset during workflow execution. Based on this, a new data placement strategy named DE-DPSO-DPS is proposed. DE-DPSO-DPS is evaluated using several experiments designed in simulated heterogeneous edge-cloud computing environments. The results demonstrate that our data placement strategy can effectively reduce the data transmission time and achieve superior performance as compared to traditional strategies for data-sharing scientific workflows.
2021-06-30
Wong, Lauren J., Altland, Emily, Detwiler, Joshua, Fermin, Paolo, Kuzin, Julia Mahon, Moeliono, Nathan, Abdalla, Abdelrahman Said, Headley, William C., Michaels, Alan J..  2020.  Resilience Improvements for Space-Based Radio Frequency Machine Learning. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—5.
Recent work has quantified the degradations that occur in convolutional neural nets (CNN) deployed in harsh environments like space-based image or radio frequency (RF) processing applications. Such degradations yield a robust correlation and causality between single-event upset (SEU) induced errors in memory weights of on-orbit CNN implementations. However, minimal considerations have been given to how the resilience of CNNs can be improved algorithmically as opposed to via enhanced hardware. This paper focuses on RF-processing CNNs and performs an in-depth analysis of applying software-based error detection and correction mechanisms, which may subsequently be combined with protections of radiation-hardened processor platforms. These techniques are more accessible for low cost smallsat platforms than ruggedized hardware. Additionally, methods for minimizing the memory and computational complexity of the resulting resilience techniques are identified. Combined with periodic scrubbing, the resulting techniques are shown to improve expected lifetimes of CNN-based RF-processing algorithms by several orders of magnitude.
2021-08-31
Ge, Chonghui, Sun, Jian, Sun, Yuxin, Di, Yunlong, Zhu, Yongjin, Xie, Linfeng, Zhang, Yingzhou.  2020.  Reversible Database Watermarking Based on Random Forest and Genetic Algorithm. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :239—247.
The advancing information technology is playing more and more important role in data mining of relational database.1 The transfer and sharing of databases cause the copyright-related security threats. Database watermarking technology can effectively solve the problem with copyright protection and traceability, which has been attracting researchers' attention. In this paper, we proposed a novel, robust and reversible database watermarking technique, named histogram shifting watermarking based on random forest and genetic algorithm (RF-GAHCSW). It greatly improves the watermark capacity by means of histogram width reduction and eliminates the impact of the prediction error attack. Meanwhile, random forest algorithm is used to select important attributes for watermark embedding, and genetic algorithm is employed to find the optimal secret key for the database grouping and determine the position of watermark embedding to improve the watermark capacity and reduce data distortion. The experimental results show that the robustness of RF-GAHCSW is greatly improved, compared with the original HSW, and the distortion has little effect on the usability of database.
2021-03-29
Maklachkova, V. V., Dokuchaev, V. A., Statev, V. Y..  2020.  Risks Identification in the Exploitation of a Geographically Distributed Cloud Infrastructure for Storing Personal Data. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1—6.

Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.

2021-05-13
Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

2021-08-31
Vonitsanos, Gerasimos, Dritsas, Elias, Kanavos, Andreas, Mylonas, Phivos, Sioutas, Spyros.  2020.  Security and Privacy Solutions associated with NoSQL Data Stores. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA). :1—5.
Technologies such as cloud computing and big data management, have lately made significant progress creating an urgent need for specific databases that can safely store extensive data along with high availability. Specifically, a growing number of companies have adopted various types of non-relational databases, commonly referred to as NoSQL databases. These databases provide a robust mechanism for the storage and retrieval of large amounts of data without using a predefined schema. NoSQL platforms are superior to RDBMS, especially in cases when we are dealing with big data and parallel processing, and in particular, when there is no need to use relational modeling. Sensitive data is stored daily in NoSQL Databases, making the privacy problem more serious while raising essential security issues. In our paper, security and privacy issues when dealing with NoSQL databases are introduced and in following, security mechanisms and privacy solutions are thoroughly examined.
2021-05-05
Rana, Krishan, Dasagi, Vibhavari, Talbot, Ben, Milford, Michael, Sünderhauf, Niko.  2020.  Multiplicative Controller Fusion: Leveraging Algorithmic Priors for Sample-efficient Reinforcement Learning and Safe Sim-To-Real Transfer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6069—6076.
Learning-based approaches often outperform hand-coded algorithmic solutions for many problems in robotics. However, learning long-horizon tasks on real robot hardware can be intractable, and transferring a learned policy from simulation to reality is still extremely challenging. We present a novel approach to model-free reinforcement learning that can leverage existing sub-optimal solutions as an algorithmic prior during training and deployment. During training, our gated fusion approach enables the prior to guide the initial stages of exploration, increasing sample-efficiency and enabling learning from sparse long-horizon reward signals. Importantly, the policy can learn to improve beyond the performance of the sub-optimal prior since the prior's influence is annealed gradually. During deployment, the policy's uncertainty provides a reliable strategy for transferring a simulation-trained policy to the real world by falling back to the prior controller in uncertain states. We show the efficacy of our Multiplicative Controller Fusion approach on the task of robot navigation and demonstrate safe transfer from simulation to the real world without any fine-tuning. The code for this project is made publicly available at https://sites.google.com/view/mcf-nav/home.
2021-03-04
Kostromitin, K. I., Dokuchaev, B. N., Kozlov, D. A..  2020.  Analysis of the Most Common Software and Hardware Vulnerabilities in Microprocessor Systems. 2020 International Russian Automation Conference (RusAutoCon). :1031—1036.

The relevance of data protection is related to the intensive informatization of various aspects of society and the need to prevent unauthorized access to them. World spending on ensuring information security (IS) for the current state: expenses in the field of IS today amount to \$81.7 billion. Expenditure forecast by 2020: about \$105 billion [1]. Information protection of military facilities is the most critical in the public sector, in the non-state - financial organizations is one of the leaders in spending on information protection. An example of the importance of IS research is the Trojan encoder WannaCry, which infected hundreds of thousands of computers around the world, attacks are recorded in more than 116 countries. The attack of the encoder of WannaCry (Wana Decryptor) happens through a vulnerability in service Server Message Block (protocol of network access to file systems) of Windows OS. Then, a rootkit (a set of malware) was installed on the infected system, using which the attackers launched an encryption program. Then each vulnerable computer could become infected with another infected device within one local network. Due to these attacks, about \$70,000 was lost (according to data from 18.05.2017) [2]. It is assumed in the presented work, that the software level of information protection is fundamentally insufficient to ensure the stable functioning of critical objects. This is due to the possible hardware implementation of undocumented instructions, discussed later. The complexity of computing systems and the degree of integration of their components are constantly growing. Therefore, monitoring the operation of the computer hardware is necessary to achieve the maximum degree of protection, in particular, data processing methods.

2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
2021-08-17
Daru, April Firman, Dwi Hartomo, Kristoko, Purnomo, Hindriyanto Dwi.  2020.  Internet of Things Wireless Attack Detection Conceptual Model Over IPv6 Network. 2020 International Seminar on Application for Technology of Information and Communication (iSemantic). :431–435.
Wireless network is an alternative communication to cable, where radio wave is used as transmission media instead of copper medium. However, wireless network more vulnerable to risk in security compared to cable network. Wireless network mostly used by Internet of Things node as communication media between nodes. Hence, these nodes exposed to risk of flooding attack from third party person. Hence, a system which capability to detect flooding attack at IoT node is required. Many researches have been done before, but most of the research only focus to IPv4 and signature-based detection. IPv6-based attacks undetectable by the current research, due to different datagram structure. This paper proposed a conceptual detection method with reinforcement learning algorithm to detect IPv6-based attack targeting IoT nodes. This reward will decide whether the detection system is good or not. The assessment calculation equation is used to turn reward-based score into detection accuracy.
2022-10-16
Van Es, Noah, Van der Plas, Jens, Stiévenart, Quentin, De Roover, Coen.  2020.  MAF: A Framework for Modular Static Analysis of Higher-Order Languages. 2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM). :37–42.
A modular static analysis decomposes a program's analysis into analyses of its parts, or components. An intercomponent analysis instructs an intra-component analysis to analyse each component independently of the others. Additional analyses are scheduled for newly discovered components, and for dependent components that need to account for newly discovered component information. Modular static analyses are scalable, can be tuned to a high precision, and support the analysis of programs that are highly dynamic, featuring e.g., higher-order functions or dynamically allocated processes.In this paper, we present the engineering aspects of MAF, a static analysis framework for implementing modular analyses for higher-order languages. For any such modular analysis, the framework provides a reusable inter-component analysis and it suffices to implement its intra-component analysis. The intracomponent analysis can be composed from several interdependent and reusable Scala traits. This design facilitates changing the analysed language, as well as the analysis precision with minimal effort. We illustrate the use of MAF through its instantiation for several different analyses of Scheme programs.
2021-09-07
Thie, Nicolas, Franken, Marco, Schwaeppe, Henrik, Böttcher, Luis, Müller, Christoph, Moser, Albert, Schumann, Klemens, Vigo, Daniele, Monaci, Michele, Paronuzzi, Paolo et al..  2020.  Requirements for Integrated Planning of Multi-Energy Systems. 2020 6th IEEE International Energy Conference (ENERGYCon). :696–701.
The successful realization of the climate goals agreed upon in the European Union's COP21 commitments makes a fundamental change of the European energy system necessary. In particular, for a reduction of greenhouse gas emissions over 80%, the use of renewable energies must be increased not only in the electricity sector but also across all energy sectors, such as heat and mobility. Furthermore, a progressive integration of renewable energies increases the risk of congestions in the transmission grid and makes network expansion necessary. An efficient planning for future energy systems must comprise the coupling of energy sectors as well as interdependencies of generation and transmission grid infrastructure. However, in traditional energy system planning, these aspects are considered as decoupled. Therefore, the project PlaMES develops an approach for integrated planning of multi-energy systems on a European scale. This paper aims at analyzing the model requirements and describing the modeling approach.
2021-11-08
Sisodiya, Mraduraje, Dahima, Vartika, Joshi, Sunil.  2020.  Trust Based Mechanism Using Multicast Routing in RPL for the Internet of Things. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :392–397.
RPL, the IPv6 Routing Protocol for low-power and lossy networks, was standardized by the Internet Engineering Task Force (IETF) in 2011. It is developed to connect resource constrained devices enabled by low-power and lossy networks (LLNs). RPL prominently becomes the routing protocol for IoT. However, the RPL protocol is facing many challenges such as trustworthiness among the nodes which need to be addressed and resolved to make the network secure and efficient. In this paper, a multicasting technique is developed that is based on trust mechanism to resolve this issue. This mechanism manages and protects the network from untrusted nodes which can hamper the security and result in delayed and distorted transmission of data. It allows any node to decide whether to trust other nodes or not during the construction of the topology. This is then proved efficient by comparing it with broadcasting nature of the transmission among the nodes in terms of energy, throughput, percentage of alive and dead nodes.
2021-05-13
Gomathi, S., Parmar, Nilesh, Devi, Jyoti, Patel, Namrata.  2020.  Detecting Malware Attack on Cloud using Deep Learning Vector Quantization. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :356—361.

In recent times cloud services are used widely and due to which there are so many attacks on the cloud devices. One of the major attacks is DDos (distributed denial-of-service) -attack which mainly targeted the Memcached which is a caching system developed for speeding the websites and the networks through Memcached's database. The DDoS attack tries to destroy the database by creating a flood of internet traffic at the targeted server end. Attackers send the spoofing applications to the vulnerable UDP Memcached server which even manipulate the legitimate identity of the sender. In this work, we have proposed a vector quantization approach based on a supervised deep learning approach to detect the Memcached attack performed by the use of malicious firmware on different types of Cloud attached devices. This vector quantization approach detects the DDoas attack performed by malicious firmware on the different types of cloud devices and this also classifies the applications which are vulnerable to attack based on cloud-The Hackbeased services. The result computed during the testing shows the 98.2 % as legally positive and 0.034% as falsely negative.

2021-06-30
DelVecchio, Matthew, Flowers, Bryse, Headley, William C..  2020.  Effects of Forward Error Correction on Communications Aware Evasion Attacks. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1—7.
Recent work has shown the impact of adversarial machine learning on deep neural networks (DNNs) developed for Radio Frequency Machine Learning (RFML) applications. While these attacks have been shown to be successful in disrupting the performance of an eavesdropper, they fail to fully support the primary goal of successful intended communication. To remedy this, a communications-aware attack framework was recently developed that allows for a more effective balance between the opposing goals of evasion and intended communication through the novel use of a DNN to intelligently create the adversarial communication signal. Given the near ubiquitous usage of for-ward error correction (FEC) coding in the majority of deployed systems to correct errors that arise, incorporating FEC in this framework is a natural extension of this prior work and will allow for improved performance in more adverse environments. This work therefore provides contributions to the framework through improved loss functions and design considerations to incorporate inherent knowledge of the usage of FEC codes within the transmitted signal. Performance analysis shows that FEC coding improves the communications aware adversarial attack even if no explicit knowledge of the coding scheme is assumed and allows for improved performance over the prior art in balancing the opposing goals of evasion and intended communications.
Ding, Xinyao, Wang, Yan.  2020.  False Data Injection Attack Detection Before Decoding in DF Cooperative Relay Network. 2020 Asia Conference on Computers and Communications (ACCC). :57—61.
False data injection (FDI) attacks could happen in decode-and-forward (DF) wireless cooperative relay networks. Although physical integrity check (PIC) can combat that by applying physical layer detection, the detector depends on the decoding results and low signal-to-noise ratio (SNR) further deteriorates the detecting results. In this paper, a physical layer detect-before-decode (DbD) method is proposed, which has low computational complexity with no sacrifice of false alarm and miss detection rates. One significant advantage of this method is the detector does not depend on the decoding results. In order to implement the proposed DbD method, a unified error sufficient statistic (UESS) containing the full information of FDI attacks is constructed. The proposed UESS simplifies the detector because it is applicable to all link conditions, which means there is no need to deal each link condition with a specialized sufficient statistic. Moreover, the source to destination outage probability (S2Dop) of the DF cooperative relay network utilizing the proposed DbD method is studied. Finally, numerical simulations verify the good performance of this DbD method.
2021-03-29
Distler, V., Lallemand, C., Koenig, V..  2020.  Making Encryption Feel Secure: Investigating how Descriptions of Encryption Impact Perceived Security. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :220—229.

When communication about security to end users is ineffective, people frequently misinterpret the protection offered by a system. The discrepancy between the security users perceive a system to have and the actual system state can lead to potentially risky behaviors. It is thus crucial to understand how security perceptions are shaped by interface elements such as text-based descriptions of encryption. This article addresses the question of how encryption should be described to non-experts in a way that enhances perceived security. We tested the following within-subject variables in an online experiment (N=309): a) how to best word encryption, b) whether encryption should be described with a focus on the process or outcome, or both c) whether the objective of encryption should be mentioned d) when mentioning the objective of encryption, how to best describe it e) whether a hash should be displayed to the user. We also investigated the role of context (between subjects). The verbs "encrypt" and "secure" performed comparatively well at enhancing perceived security. Overall, participants stated that they felt more secure not knowing about the objective of encryption. When it is necessary to state the objective, positive wording of the objective of encryption worked best. We discuss implications and why using these results to design for perceived lack of security might be of interest as well. This leads us to discuss ethical concerns, and we give guidelines for the design of user interfaces where encryption should be communicated to end users.

2021-01-28
Drašar, M., Moskal, S., Yang, S., Zat'ko, P..  2020.  Session-level Adversary Intent-Driven Cyberattack Simulator. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1—9.

Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers' actions on the defender's infrastructure, this work focuses on the attackers' strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.

2021-04-29
Hayes, J. Huffman, Payne, J., Essex, E., Cole, K., Alverson, J., Dekhtyar, A., Fang, D., Bernosky, G..  2020.  Towards Improved Network Security Requirements and Policy: Domain-Specific Completeness Analysis via Topic Modeling. 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). :83—86.

Network security policies contain requirements - including system and software features as well as expected and desired actions of human actors. In this paper, we present a framework for evaluation of textual network security policies as requirements documents to identify areas for improvement. Specifically, our framework concentrates on completeness. We use topic modeling coupled with expert evaluation to learn the complete list of important topics that should be addressed in a network security policy. Using these topics as a checklist, we evaluate (students) a collection of network security policies for completeness, i.e., the level of presence of these topics in the text. We developed three methods for topic recognition to identify missing or poorly addressed topics. We examine network security policies and report the results of our analysis: preliminary success of our approach.

2021-05-13
Camenisch, Jan, Drijvers, Manu, Lehmann, Anja, Neven, Gregory, Towa, Patrick.  2020.  Zone Encryption with Anonymous Authentication for V2V Communication. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :405—424.

Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to encrypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level.

2020-11-20
Demjaha, A., Caulfield, T., Sasse, M. Angela, Pym, D..  2019.  2 Fast 2 Secure: A Case Study of Post-Breach Security Changes. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :192—201.
A security breach often makes companies react by changing their attitude and approach to security within the organization. This paper presents an in-depth case study of post-breach security changes made by a company and the consequences of those changes. We employ the principles of participatory action research and humble inquiry to conduct a long-term study with employee interviews while embedded in the organization's security division. Despite an extremely high level of financial investment in security, and consistent attention and involvement from the board, the interviews indicate a significant level of friction between employees and security. In the main themes that emerged from our data analysis, a number of factors shed light on the friction: fear of another breach leading to zero risk appetite, impossible security controls making non-compliance a norm, security theatre underminining the purpose of security policies, employees often trading-off security with productivity, and as such being treated as children in detention rather than employees trying to finish their paid jobs. This paper shows that post-breach security changes can be complex and sometimes risky due to emotions often being involved. Without an approach considerate of how humans and security interact, even with high financial investment, attempts to change an organization's security behaviour may be ineffective.
2020-05-15
Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.  2019.  An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
2020-09-21
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
2020-02-17
de Andrade Bragagnolle, Thiago, Pereira Nogueira, Marcelo, de Oliveira Santos, Melissa, do Prado, Afonso José, Ferreira, André Alves, de Mello Fagotto, Eric Alberto, Aldaya, Ivan, Abbade, Marcelo Luís Francisco.  2019.  All-Optical Spectral Shuffling of Signals Traveling through Different Optical Routes. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
A recent proposed physical layer encryption technique uses an all-optical setup based on spatial light modulators to split two or more wavelength division multiplexed (WDM) signals in several spectral slices and to shuffle these slices. As a result, eavesdroppers aimed to recover information from a single target signal need to handle all the signals involved in the shuffling process. In this work, computer simulations are used to analyse the case where the shuffled signals propagate through different optical routes. From a security point of view, this is an interesting possibility because it obliges eavesdroppers to tap different optical fibres/ cables. On the other hand, each shuffled signal experiences different physical impairments and the deleterious consequences of these effects must be carefully investigated. Our results indicate that, in a metropolitan area network environment, penalties caused by attenuation and dispersion differences may be easily compensated with digital signal processing algorithms that are presently deployed.
2020-07-06
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.