Biblio
In this paper we investigate whether and how hardware-based roots of trust, namely Trusted Platform Modules (TPMs) can improve the security of the communication protocol OPC UA (Open Platform Communications Unified Architecture) under reasonable assumptions, i.e. the Dolev-Yao attacker model. Our analysis shows that TPMs may serve for generating (RNG) and securely storing cryptographic keys, as cryptocoprocessors for weak systems, as well as for remote attestation. We propose to include these TPM functions into OPC UA via so-called ConformanceUnits, which can serve as building blocks of profiles that are used by clients and servers for negotiating the parameters of a session. Eventually, we present first results regarding the performance of a client-server communication including an additional OPC UA server providing remote attestation of other OPC UA servers.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement.
Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.
Over the last years, the number of rather simple interconnected devices in nonindustrial scenarios (e.g., for home automation) has steadily increased. For ease of use, the overall system security is often neglected. Before the Internet of Things (IoT) reaches the same distribution rate and impact in industrial applications, where security is crucial for success, solutions that combine usability, scalability, and security are required. We develop such a security system, mainly targeting sensor modules equipped with Radio Frequency IDentification (RFID) tags which we leverage to increase the security level. More specifically, we consider a network based on Message Queue Telemetry Transport (MQTT) which is a widely adopted protocol for the IoT.
The Internet of Things (IoT) will connect not only computers and mobile devices, but it will also interconnect smart buildings, houses, and cities, as well as electrical grids, gas plants, and water networks, automobiles, airplanes, etc. IoT will lead to the development of a wide range of advanced information services that are pervasive, cost-effective, and can be accessed from anywhere and at any time. However, due to the exponential number of interconnected devices, cyber-security in the IoT is a major challenge. It heavily relies on the digital identity concept to build security mechanisms such as authentication and authorization. Current centralized identity management systems are built around third party identity providers, which raise privacy concerns and present a single point of failure. In addition, IoT unconventional characteristics such as scalability, heterogeneity and mobility require new identity management systems to operate in distributed and trustless environments, and uniquely identify a particular device based on its intrinsic digital properties and its relation to its human owner. In order to deal with these challenges, we present a Blockchain-based Identity Framework for IoT (BIFIT). We show how to apply our BIFIT to IoT smart homes to achieve identity self-management by end users. In the context of smart home, the framework autonomously extracts appliances signatures and creates blockchain-based identifies for their appliance owners. It also correlates appliances signatures (low level identities) and owners identifies in order to use them in authentication credentials and to make sure that any IoT entity is behaving normally.
The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.
Most of the social media platforms generate a massive amount of raw data that is slow-paced. On the other hand, Internet Relay Chat (IRC) protocol, which has been extensively used by hacker community to discuss and share their knowledge, facilitates fast-paced and real-time text communications. Previous studies of malicious IRC behavior analysis were mostly either offline or batch processing. This results in a long response time for data collection, pre-processing, and threat detection. However, since the threats can use the latest vulnerabilities to exploit systems (e.g. zero-day attack) and which can spread fast using IRC channels. Current IRC channel monitoring techniques cannot provide the required fast detection and alerting. In this paper, we present an alternative approach to overcome this limitation by providing real-time and autonomic threat detection in IRC channels. We demonstrate the capabilities of our approach using as an example the shadow brokers' leak exploit (the exploit leveraged by WannaCry ransomware attack) that was captured and detected by our framework.
To overcome the current cybersecurity challenges of protecting our cyberspace and applications, we present an innovative cloud-based architecture to offer resilient Dynamic Data Driven Application Systems (DDDAS) as a cloud service that we refer to as resilient DDDAS as a Service (rDaaS). This architecture integrates Service Oriented Architecture (SOA) and DDDAS paradigms to offer the next generation of resilient and agile DDDAS-based cyber applications, particularly convenient for critical applications such as Battle and Crisis Management applications. Using the cloud infrastructure to offer resilient DDDAS routines and applications, large scale DDDAS applications can be developed by users from anywhere and by using any device (mobile or stationary) with the Internet connectivity. The rDaaS provides transformative capabilities to achieve superior situation awareness (i.e., assessment, visualization, and understanding), mission planning and execution, and resilient operations.
As the use of wireless technologies increases significantly due to ease of deployment, cost-effectiveness and the increase in bandwidth, there is a critical need to make the wireless communications secure, and resilient to attacks or faults (malicious or natural). Wireless communications are inherently prone to cyberattacks due to the open access to the medium. While current wireless protocols have addressed the privacy issues, they have failed to provide effective solutions against denial of service attacks, session hijacking and jamming attacks. In this paper, we present a resilient wireless communication architecture based on Moving Target Defense, and Software Defined Radios (SDRs). The approach achieves its resilient operations by randomly changing the runtime characteristics of the wireless communications channels between different wireless nodes to make it extremely difficult to succeed in launching attacks. The runtime characteristics that can be changed include packet size, network address, modulation type, and the operating frequency of the channel. In addition, the lifespan for each configuration will be random. To reduce the overhead in switching between two consecutive configurations, we use two radio channels that are selected at random from a finite set of potential channels, one will be designated as an active channel while the second acts as a standby channel. This will harden the wireless communications attacks because the attackers have no clue on what channels are currently being used to exploit existing vulnerability and launch an attack. The experimental results and evaluation show that our approach can tolerate a wide range of attacks (Jamming, DOS and session attacks) against wireless networks.
Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.
Clean slate design of computing system is an emerging topic for continuing growth of warehouse-scale computers. A famous custom design is rackscale (RS) computing by considering a single rack as a computer that consists of a number of processors, storages and accelerators customized to a target application. In RS, each user is expected to occupy a single or more than one rack. However, new users frequently appear and the users often change their application scales and parameters that would require different numbers of processors, storages and accelerators in a rack. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context, we propose the inter-rackscale (IRS) architecture that disaggregates various hardware resources into different racks according to their own areas. The heart of IRS is to use free-space optics (FSO) for tightly-coupled connections between processors, storages and GPUs distributed in different racks, by swapping endpoints of FSO links to change network topologies. Through a large IRS system simulation, we show that by utilizing FSO links for interconnection between racks, the FSO-equipped IRS architecture can provide comparable communication latency between heterogeneous resources to that of the counterpart RS architecture. A utilization of 3 FSO terminals per rack can improve at least 87.34% of inter-CPU/SSD(GPU) communication over Fat-tree and improve at least 92.18% of that over 2-D Torus. We verify the advantages of IRS over RS in job scheduling performance.