Biblio

Found 3405 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2018-04-11
Yang, Y., Wu, L., Zhang, X., He, J..  2017.  A Novel Hardware Trojan Detection with Chip ID Based on Relative Time Delays. 2017 11th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID). :163–167.

This paper introduces a hardware Trojan detection method using Chip ID which is generated by Relative Time-Delays (RTD) of sensor chains and the effectiveness of RTD is verified by post-layout simulations. The rank of time-delays of the sensor chains would be changed in Trojan-inserted chip. RTD is an accurate approach targeting to all kinds of Trojans, since it is based on the RELATIVE relationship between the time-delays rather than the absolute values, which are hard to be measured and will change with the fabricate process. RTD needs no golden chip, because the RELATIVE values would not change in most situations. Thus the genuine ID can be generated by simulator. The sensor chains can be inserted into a layout utilizing unused spaces, so RTD is a low-cost solution. A Trojan with 4x minimum NMOS is placed in different places of the chip. The behavior of the chip is obtained by using transient based post-layout simulation. All the Trojans are detected AND located, thus the effectiveness of RTD is verified.

2018-06-11
Rohmah, Y. N., Sudiharto, D. W., Herutomo, A..  2017.  The performance comparison of forwarding mechanism between IPv4 and Named Data Networking (NDN). Case study: A node compromised by the prefix hijack. 2017 3rd International Conference on Science in Information Technology (ICSITech). :302–306.

Named Data Networking (NDN) is a new network architecture design that led to the evolution of a network architecture based on data-centric. Questions have been raised about how to compare its performance with the old architecture such as IP network which is generally based on Internet Protocol version 4 (IPv4). Differs with the old one, source and destination addresses in the delivery of data are not required on the NDN network because the addresses function is replaced by a data name (Name) which serves to identify the data uniquely. In a computer network, a network routing is an essential factor to support data communication. The network routing on IP network relies only on Routing Information Base (RIB) derived from the IP table on the router. So that, if there is a problem on the network such as there is one node exposed to a dangerous attack, the IP router should wait until the IP table is updated, and then the routing channel is changed. The issue of how to change the routing path without updating IP table has received considerable critical attention. The NDN network has an advantage such as its capability to execute an adaptive forwarding mechanism, which FIB (Forwarding Information Base) of the NDN router keeps information for routing and forwarding planes. Therefore, if there is a problem on the network, the NDN router can detect the problem more quickly than the IP router. The contribution of this study is important to explain the benefit of the forwarding mechanism of the NDN network compared to the IP network forwarding mechanism when there is a node which is suffered a hijack attack.

2018-06-07
Xiang-ning, M., Kai-jia, L., Hao, L..  2017.  A physical layer security algorithm based on constellation. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :50–53.
The cyclostationary characteristics of signals has some important applications in such as blind channel equalization, blind adaptive beamforming, and system identification. However, the cyclostationary characteristics also can be a weak link in physical layer security. With high-order cyclostationary theory, some system information can be obtained easily. In this paper, we proposed a new algorithm based on constellation phase rotation and amplitude randomization, during which the cyclostationary feature of signals can be suppressed.
2017-12-20
Zhang, S., Peng, J., Huang, K., Xu, X., Zhong, Z..  2017.  Physical layer security in IoT: A spatial-temporal perspective. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Delay and security are both highly concerned in the Internet of Things (IoT). In this paper, we set up a secure analytical framework for IoT networks to characterize the network delay performance and secrecy performance. Firstly, stochastic geometry and queueing theory are adopted to model the location of IoT devices and the temporal arrival of packets. Based on this model, a low-complexity secure on-off scheme is proposed to improve the network performance. Then, the delay performance and secrecy performance are evaluated in terms of packet delay and packet secrecy outage probability. It is demonstrated that the intensity of IoT devices arouse a tradeoff between the delay and security and the secure on-off scheme can improve the network delay performance and secrecy performance. Moreover, secrecy transmission rate is adopted to reflect the delay-security tradeoff. The analytical and simulation results show the effects of intensity of IoT devices and secure on-off scheme on the network delay performance and secrecy performance.
2018-05-30
Howard, M., Pfeffer, A., Dalai, M., Reposa, M..  2017.  Predicting Signatures of Future Malware Variants. 2017 12th International Conference on Malicious and Unwanted Software (MALWARE). :126–132.
One of the challenges of malware defense is that the attacker has the advantage over the defender. In many cases, an attack is successful and causes damage before the defender can even begin to prepare a defense. The ability to anticipate attacks and prepare defenses before they occur would be a significant scientific and technological development with practical applications in cybersecurity. In this paper, we present a method to augment machine learning-based malware detection systems by predicting signatures of future malware variants and injecting these variants into the defensive system as a vaccine. Our method uses deep learning to learn patterns of malware evolution from family histories. These evolution patterns are then used to predict future family developments. Our experiments show that a detection system augmented with these future malware signatures is able to detect future malware variants that could not be detected by the detection system alone. In particular, it detected 11 new malware variants without increasing false positives, while providing up to 5 months of lead time between prediction and attack.
2018-09-28
Hu, J., Shi, W., Liu, H., Yan, J., Tian, Y., Wu, Z..  2017.  Preserving Friendly-Correlations in Uncertain Graphs Using Differential Privacy. 2017 International Conference on Networking and Network Applications (NaNA). :24–29.

It is a challenging problem to preserve the friendly-correlations between individuals when publishing social-network data. To alleviate this problem, uncertain graph has been presented recently. The main idea of uncertain graph is converting an original graph into an uncertain form, where the correlations between individuals is an associated probability. However, the existing methods of uncertain graph lack rigorous guarantees of privacy and rely on the assumption of adversary's knowledge. In this paper we first introduced a general model for constructing uncertain graphs. Then, we proposed an algorithm under the model which is based on differential privacy and made an analysis of algorithm's privacy. Our algorithm provides rigorous guarantees of privacy and against the background knowledge attack. Finally, the algorithm we proposed satisfied differential privacy and showed feasibility in the experiments. And then, we compare our algorithm with (k, ε)-obfuscation algorithm in terms of data utility, the importance of nodes for network in our algorithm is similar to (k, ε)-obfuscation algorithm.

2018-05-14
2018-10-26
Li, J., Hua, C..  2017.  RaptorQ code based concurrent transmissions in dual connectivity LTE network. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.

Dual Connectivity(DC) is one of the key technologies standardized in Release 12 of the 3GPP specifications for the Long Term Evolution (LTE) network. It attempts to increase the per-user throughput by allowing the user equipment (UE) to maintain connections with the MeNB (master eNB) and SeNB (secondary eNB) simultaneously, which are inter-connected via non-ideal backhaul. In this paper, we focus on one of the use cases of DC whereby the downlink U-plane data is split at the MeNB and transmitted to the UE via the associated MeNB and SeNB concurrently. In this case, out-of-order packet delivery problem may occur at the UE due to the delay over the non-ideal backhaul link, as well as the dynamics of channel conditions over the MeNB-UE and SeNB-UE links, which will introduce extra delay for re-ordering the packets. As a solution, we propose to adopt the RaptorQ FEC code to encode the source data at the MeNB, and then the encoded symbols are separately transmitted through the MeNB and SeNB. The out-of-order problem can be effectively eliminated since the UE can decode the original data as long as it receives enough encoded symbols from either the MeNB or SeNB. We present detailed protocol design for the RaptorQ code based concurrent transmission scheme, and simulation results are provided to illustrate the performance of the proposed scheme.

2018-02-28
Boyarinov, K., Hunter, A..  2017.  Security and trust for surveillance cameras. 2017 IEEE Conference on Communications and Network Security (CNS). :384–385.

We address security and trust in the context of a commercial IP camera. We take a hands-on approach, as we not only define abstract vulnerabilities, but we actually implement the attacks on a real camera. We then discuss the nature of the attacks and the root cause; we propose a formal model of trust that can be used to address the vulnerabilities by explicitly constraining compositionality for trust relationships.

2018-02-06
Berkowsky, J. A., Hayajneh, T..  2017.  Security Issues with Certificate Authorities. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :449–455.

The current state of the internet relies heavily on SSL/TLS and the certificate authority model. This model has systematic problems, both in its design as well as its implementation. There are problems with certificate revocation, certificate authority governance, breaches, poor security practices, single points of failure and with root stores. This paper begins with a general introduction to SSL/TLS and a description of the role of certificates, certificate authorities and root stores in the current model. This paper will then explore problems with the current model and describe work being done to help mitigate these problems.

2017-12-20
Liu, Z., Liu, Y., Winter, P., Mittal, P., Hu, Y. C..  2017.  TorPolice: Towards enforcing service-defined access policies for anonymous communication in the Tor network. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Tor is the most widely used anonymity network, currently serving millions of users each day. However, there is no access control in place for all these users, leaving the network vulnerable to botnet abuse and attacks. For example, criminals frequently use exit relays as stepping stones for attacks, causing service providers to serve CAPTCHAs to exit relay IP addresses or blacklisting them altogether, which leads to severe usability issues for legitimate Tor users. To address this problem, we propose TorPolice, the first privacy-preserving access control framework for Tor. TorPolice enables abuse-plagued service providers such as Yelp to enforce access rules to police and throttle malicious requests coming from Tor while still providing service to legitimate Tor users. Further, TorPolice equips Tor with global access control for relays, enhancing Tor's resilience to botnet abuse. We show that TorPolice preserves the privacy of Tor users, implement a prototype of TorPolice, and perform extensive evaluations to validate our design goals.
2018-02-02
Choi, S., Chavez, A., Torres, M., Kwon, C., Hwang, I..  2017.  Trustworthy design architecture: Cyber-physical system. 2017 International Carnahan Conference on Security Technology (ICCST). :1–9.

Conventional cyber defenses require continual maintenance: virus, firmware, and software updates; costly functional impact tests; and dedicated staff within a security operations center. The conventional defenses require access to external sources for the latest updates. The whitelisted system, however, is ideally a system that can sustain itself freed from external inputs. Cyber-Physical Systems (CPS), have the following unique traits: digital commands are physically observable and verifiable; possible combinations of commands are limited and finite. These CPS traits, combined with a trust anchor to secure an unclonable digital identity (i.e., digitally unclonable function [DUF] - Patent Application \#15/183,454; CodeLock), offers an excellent opportunity to explore defenses built on whitelisting approach called “Trustworthy Design Architecture (TDA).” There exist significant research challenges in defining what are the physically verifiable whitelists as well as the criteria for cyber-physical traits that can be used as the unclonable identity. One goal of the project is to identify a set of physical and/or digital characteristics that can uniquely identify an endpoint. The measurements must have the properties of being reliable, reproducible, and trustworthy. Given that adversaries naturally evolve with any defense, the adversary will have the goal of disrupting or spoofing this process. To protect against such disruptions, we provide a unique system engineering technique, when applied to CPSs (e.g., nuclear processing facilities, critical infrastructures), that will sustain a secure operational state without ever needing external information or active inputs from cybersecurity subject-matter experts (i.e., virus updates, IDS scans, patch management, vulnerability updates). We do this by eliminating system dependencies on external sources for protection. Instead, all internal co- munication is actively sealed and protected with integrity, authenticity and assurance checks that only cyber identities bound to the physical component can deliver. As CPSs continue to advance (i.e., IoTs, drones, ICSs), resilient-maintenance free solutions are needed to neutralize/reduce cyber risks. TDA is a conceptual system engineering framework specifically designed to address cyber-physical systems that can potentially be maintained and operated without the persistent need or demand for vulnerability or security patch updates.

2018-11-19
Huang, X., Belongie, S..  2017.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. 2017 IEEE International Conference on Computer Vision (ICCV). :1510–1519.

Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.

Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.

2018-05-23
2018-05-25
2018-05-23
2018-05-25
2018-05-24
Kul, Gokhan, Upadhyaya, Shambhu, Hughes, Andrew.  2017.  Complexity of Insider Attacks to Databases. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :25–32.

Insider attacks are one of the most dangerous threats to an organization. Unfortunately, they are very difficult to foresee, detect, and defend against due to the trust and responsibilities placed on the employees. In this paper, we first define the notion of user intent, and construct a model for the most common threat scenario used in the literature that poses a very high risk for sensitive data stored in the organization's database. We show that the complexity of identifying pseudo-intents of a user is coNP-Complete in this domain, and launching a harvester insider attack within the boundaries of the defined threat model takes linear time while a targeted threat model is an NP-Complete problem. We also discuss about the general defense mechanisms against the modeled threats, and show that countering against the harvester insider attack model takes quadratic time while countering against the targeted insider attack model can take linear to quadratic time depending on the strategy chosen. Finally, we analyze the adversarial behavior, and show that launching an attack with minimum risk is also an NP-Complete problem.

2018-01-23
Zhu, Ruiyu, Huang, Yan, Cassel, Darion.  2017.  Pool: Scalable On-Demand Secure Computation Service Against Malicious Adversaries. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :245–257.

This paper considers the problem of running a long-term on-demand service for executing actively-secure computations. We examined state-of-the-art tools and implementations for actively-secure computation and identified a set of key features indispensable to offer meaningful service like this. Since no satisfactory tools exist for the purpose, we developed Pool, a new tool for building and executing actively-secure computation protocols at extreme scales with nearly zero offline delay. With Pool, we are able to obliviously execute, for the first time, reactive computations like ORAM in the malicious threat model. Many technical benefits of Pool can be attributed to the concept of pool-based cut-and-choose. We show with experiments that this idea has significantly improved the scalability and usability of JIMU, a state-of-the-art LEGO protocol.

2018-01-10
Li, Zhijun, He, Tian.  2017.  WEBee: Physical-Layer Cross-Technology Communication via Emulation. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. :2–14.
Recent advances in Cross-Technology Communication (CTC) have improved efficient coexistence and cooperation among heterogeneous wireless devices (e.g., WiFi, ZigBee, and Bluetooth) operating in the same ISM band. However, until now the effectiveness of existing CTCs, which rely on packet-level modulation, is limited due to their low throughput (e.g., tens of bps). Our work, named WEBee, opens a promising direction for high-throughput CTC via physical-level emulation. WEBee uses a high-speed wireless radio (e.g., WiFi OFDM) to emulate the desired signals of a low-speed radio (e.g., ZigBee). Our unique emulation technique manipulates only the payload of WiFi packets, requiring neither hardware nor firmware changes in commodity technologies – a feature allowing zero-cost fast deployment on existing WiFi infrastructure. We designed and implemented WEBee with commodity devices (Atheros AR2425 WiFi card and MicaZ CC2420) and the USRP-N210 platform (for PHY layer evaluation). Our comprehensive evaluation reveals that WEBee can achieve a more than 99% reliable parallel CTC between WiFi and ZigBee with 126 Kbps in noisy environments, a throughput about 16,000x faster than current state-of-the-art CTCs.
2018-04-02
Yadav, S., Howells, G..  2017.  Analysis of ICMetrics Features/Technology for Wearable Devices IOT Sensors. 2017 Seventh International Conference on Emerging Security Technologies (EST). :175–178.

This paper investigates the suitability of employing various measurable features derived from multiple wearable devices (Apple Watch), for the generation of unique authentication and encryption keys related to the user. This technique is termed as ICMetrics. The ICMetrics technology requires identifying the suitable features in an environment for key generation most useful for online services. This paper presents an evaluation of the feasibility of identifying a unique user based on desirable feature set and activity data collected over short and long term and explores how the number of samples being factored into the ICMetrics system affects uniqueness of the key.

2017-12-28
Vizarreta, P., Heegaard, P., Helvik, B., Kellerer, W., Machuca, C. M..  2017.  Characterization of failure dynamics in SDN controllers. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.

2018-05-09
Hasan, S., Ghafouri, A., Dubey, A., Karsai, G., Koutsoukos, X..  2017.  Heuristics-based approach for identifying critical N \#x2014; k contingencies in power systems. 2017 Resilience Week (RWS). :191–197.

Reliable operation of electrical power systems in the presence of multiple critical N - k contingencies is an important challenge for the system operators. Identifying all the possible N - k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N - k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N - k contingencies. The algorithms are able to capture all the possible critical N - k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.

2018-02-21
Henneke, D., Freudenmann, C., Wisniewski, L., Jasperneite, J..  2017.  Implementation of industrial cloud applications as controlled local systems (CLS) in a smart grid context. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–7.

In Germany, as of 2017, a new smart metering infrastructure based on high security and privacy requirements will be deployed. It provides interfaces to connect meters for different commodities, to allow end users to retrieve the collected measurement data, to connect to the metering operators, and to connect Controllable Local Systems (CLSs) that establish a TLS secured connection to third parties in order to exchange data or for remote controlling of energy devices. This paper aims to connect industrial machines as CLS devices since it shows that the demands and main ideas of remotely controlled devices in the Smart Grid context and Industrial Cloud Applications match on the communication level. It describes the general architecture of the Smart Metering infrastructure in Germany, introduces the defined roles, depicts the configuration process on the different organizational levels, demonstrates the connection establishment and the initiating partners, concludes on the potential industrial use cases of this infrastructure, and provides open questions and room for further research.