Biblio

Found 459 results

Filters: First Letter Of Last Name is Q  [Clear All Filters]
2021-08-31
Tang, Zefan, Qin, Yanyuan, Jiang, Zimin, Krawec, Walter O., Zhang, Peng.  2020.  Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2020-12-17
Hu, Z., Niu, J., Ren, T., Li, H., Rui, Y., Qiu, Y., Bai, L..  2020.  A Resource Management Model for Real-time Edge System of Multiple Robots. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :222—227.

Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.

2021-05-13
Sardar, Muhammad Usama, Quoc, Do Le, Fetzer, Christof.  2020.  Towards Formalization of Enhanced Privacy ID (EPID)-based Remote Attestation in Intel SGX. 2020 23rd Euromicro Conference on Digital System Design (DSD). :604—607.

Vulnerabilities in privileged software layers have been exploited with severe consequences. Recently, Trusted Execution Environments (TEEs) based technologies have emerged as a promising approach since they claim strong confidentiality and integrity guarantees regardless of the trustworthiness of the underlying system software. In this paper, we consider one of the most prominent TEE technologies, referred to as Intel Software Guard Extensions (SGX). Despite many formal approaches, there is still a lack of formal proof of some critical processes of Intel SGX, such as remote attestation. To fill this gap, we propose a fully automated, rigorous, and sound formal approach to specify and verify the Enhanced Privacy ID (EPID)-based remote attestation in Intel SGX under the assumption that there are no side-channel attacks and no vulnerabilities inside the enclave. The evaluation indicates that the confidentiality of attestation keys is preserved against a Dolev-Yao adversary in this technology. We also present a few of the many inconsistencies found in the existing literature on Intel SGX attestation during formal specification.

2021-09-30
Peng, Cheng, Yongli, Wang, Boyi, Yao, Yuanyuan, Huang, Jiazhong, Lu, Qiao, Peng.  2020.  Cyber Security Situational Awareness Jointly Utilizing Ball K-Means and RBF Neural Networks. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :261–265.
Low accuracy and slow speed of predictions for cyber security situational awareness. This paper proposes a network security situational awareness model based on accelerated accurate k-means radial basis function (RBF) neural network, the model uses the ball k-means clustering algorithm to cluster the input samples, to get the nodes of the hidden layer of the RBF neural network, speeding up the selection of the initial center point of the RBF neural network, and optimize the parameters of the RBF neural network structure. Finally, use the training data set to train the neural network, using the test data set to test the accuracy of this neural network structure, the results show that this method has a greater improvement in training speed and accuracy than other neural networks.
2021-11-08
Qaisar, Muhammad Umar Farooq, Wang, Xingfu, Hawbani, Ammar, Khan, Asad, Ahmed, Adeel, Wedaj, Fisseha Teju.  2020.  TORP: Load Balanced Reliable Opportunistic Routing for Asynchronous Wireless Sensor Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1384–1389.
Opportunistic routing (OR) is gaining popularity in low-duty wireless sensor network (WSN), so the need for efficient and reliable data transmission is becoming more essential. Reliable transmission is only feasible if the routing protocols are secure and efficient. Due to high energy consumption, current cryptographic schemes for WSN are not suitable. Trust-based OR will ensure security and reliability with fewer resources and minimum energy consumption. OR selects the set of potential candidates for each sensor node using a prioritized metric by load balancing among the nodes. This paper introduces a trust-based load-balanced OR for duty-cycled wireless sensor networks. The candidates are prioritized on the basis of a trusted OR metric that is divided into two parts. First, the OR metric is based on the average of four probability distributions: the distance from node to sink distribution, the expected number of hops distribution, the node degree distribution, and the residual energy distribution. Second, the trust metric is based on the average of two probability distributions: the direct trust distribution and the recommended trust distribution. Finally, the trusted OR metric is calculated by multiplying the average of two metrics distributions in order to direct more traffic through the higher priority nodes. The simulation results show that our proposed protocol provides a significant improvement in the performance of the network compared to the benchmarks in terms of energy consumption, end to end delay, throughput, and packet delivery ratio.
2021-03-30
Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

2021-08-17
Hussien, Zainab Waleed, Qawasmeh, Doaa Sami, Shurman, Mohammad.  2020.  MSCLP: Multi-Sinks Cluster-Based Location Privacy Protection scheme in WSNs for IoT. 2020 32nd International Conference on Microelectronics (ICM). :1—4.
One of the most important information in Wireless Sensor Networks (WSNs) is the location of each sensor node. This kind of information is very attractive to attackers for real position exposure of nodes making the whole network vulnerable to different kinds of attacks. According to WSNs privacy, there are two types of threats affect the network: Contextual and Content privacy. In this work, we study contextual privacy, where an eavesdropper tries to find the location of the source or sink node. We propose a Multi-Sinks Cluster-Based Location Privacy Protection (MSCLP) scheme in WSNs that divides the WSN into clusters, each cluster managed by one cluster head (CH). Each CH sends random fake packets in a loop then sends the real packet to the neighbor's CHs using a dynamic routing method to confuse the attacker from tracing back the real packet to reveal the actual location of the source node, we are taking in our consideration two important metrics: the energy consumption, and the delay.
2021-01-25
Marasco, E. O., Quaglia, F..  2020.  AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
2021-02-03
Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

2021-01-25
Zhang, J., Ji, X., Xu, W., Chen, Y.-C., Tang, Y., Qu, G..  2020.  MagView: A Distributed Magnetic Covert Channel via Video Encoding and Decoding. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :357—366.

Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.

2021-03-09
Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.

2021-01-15
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S..  2020.  Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3204—3213.
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for datasets of DeepFake videos. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
2021-02-10
Shang, F., Li, X., Zhai, D., Lu, Y., Zhang, D., Qian, Y..  2020.  On the Distributed Jamming System of Covert Timing Channels in 5G Networks. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1107—1111.
To build the fifth generation (5G) mobile network, the sharing structure in the 5G network adopted in industries has gained great research interesting. However, in this structure data are shared among diversity networks, which introduces the threaten of network security, such as covert timing channels. To eliminate the covert timing channel, we propose to inject noise into the covert timing channel. By analyzing the modulation method of covert timing channels, we design the jamming strategy on the covert channel. According to the strategy, the interference algorithm of the covert timing channel is designed. Since the interference algorithm depends heavily on the memory, we construct a distributing jammer. Experiments results show that these covert time channel can be blocked under the distributing jammer.
2021-08-11
Qadir, Abdalbasit Mohammed, Cooper, Peter.  2020.  GPS-based Mobile Cross-platform Cargo Tracking System with Web-based Application. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—7.
Cross-platform development is becoming widely used by developers, and writing for separate platforms is being replaced by developing a single code base that will work across multiple platforms simultaneously, while reducing cost and time. The purpose of this paper is to demonstrate cross-platform development by creating a cargo tracking system that will work on multiple platforms with web application by tracking cargo using Global Positioning System (GPS), since the transport business has played a vital role in the evolution of human civilization. In this system, Google Flutter technology is used to create a mobile application that works on both Android and iOS platforms at the same time, by providing maps to clients showing their cargo location using Google Map API, as well as providing a web-based application.
2021-03-22
Pitaval, R.-A., Qin, Y..  2020.  Grassmannian Frames in Composite Dimensions by Exponentiating Quadratic Forms. 2020 IEEE International Symposium on Information Theory (ISIT). :13–18.
Grassmannian frames in composite dimensions D are constructed as a collection of orthogonal bases where each is the element-wise product of a mask sequence with a generalized Hadamard matrix. The set of mask sequences is obtained by exponentiation of a q-root of unity by different quadratic forms with m variables, where q and m are the product of the unique primes and total number of primes, respectively, in the prime decomposition of D. This method is a generalization of a well-known construction of mutually unbiased bases, as well as second-order Reed-Muller Grassmannian frames for power-of-two dimension D = 2m, and allows to derive highly symmetric nested families of frames with finite alphabet. Explicit sets of symmetric matrices defining quadratic forms leading to constructions in non-prime-power dimension with good distance properties are identified.
2020-12-14
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
2021-09-16
Qurashi, Mohammed Al, Angelopoulos, Constantinos Marios, Katos, Vasilios.  2020.  An Architecture for Resilient Intrusion Detection in IoT Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
We introduce a lightweight architecture of Intrusion Detection Systems (IDS) for ad-hoc IoT networks. Current state-of-the-art IDS have been designed based on assumptions holding from conventional computer networks, and therefore, do not properly address the nature of IoT networks. In this work, we first identify the correlation between the communication overheads and the placement of an IDS (as captured by proper placement of active IDS agents in the network). We model such networks as Random Geometric Graphs. We then introduce a novel IDS architectural approach by having only a minimum subset of the nodes acting as IDS agents. These nodes are able to monitor the network and detect attacks at the networking layer in a collaborative manner by monitoring 1-hop network information provided by routing protocols such as RPL. Conducted experiments show that our proposed IDS architecture is resilient and robust against frequent topology changes due to node failures. Our detailed experimental evaluation demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates.
2021-01-28
Kariyappa, S., Qureshi, M. K..  2020.  Defending Against Model Stealing Attacks With Adaptive Misinformation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :767—775.

Deep Neural Networks (DNNs) are susceptible to model stealing attacks, which allows a data-limited adversary with no knowledge of the training dataset to clone the functionality of a target model, just by using black-box query access. Such attacks are typically carried out by querying the target model using inputs that are synthetically generated or sampled from a surrogate dataset to construct a labeled dataset. The adversary can use this labeled dataset to train a clone model, which achieves a classification accuracy comparable to that of the target model. We propose "Adaptive Misinformation" to defend against such model stealing attacks. We identify that all existing model stealing attacks invariably query the target model with Out-Of-Distribution (OOD) inputs. By selectively sending incorrect predictions for OOD queries, our defense substantially degrades the accuracy of the attacker's clone model (by up to 40%), while minimally impacting the accuracy (\textbackslashtextless; 0.5%) for benign users. Compared to existing defenses, our defense has a significantly better security vs accuracy trade-off and incurs minimal computational overhead.

2021-01-20
Mehmood, Z., Qazi, K. Ashfaq, Tahir, M., Yousaf, R. Muhammad, Sardaraz, M..  2020.  Potential Barriers to Music Fingerprinting Algorithms in the Presence of Background Noise. 2020 6th Conference on Data Science and Machine Learning Applications (CDMA). :25—30.

An acoustic fingerprint is a condensed and powerful digital signature of an audio signal which is used for audio sample identification. A fingerprint is the pattern of a voice or audio sample. A large number of algorithms have been developed for generating such acoustic fingerprints. These algorithms facilitate systems that perform song searching, song identification, and song duplication detection. In this study, a comprehensive and powerful survey of already developed algorithms is conducted. Four major music fingerprinting algorithms are evaluated for identifying and analyzing the potential hurdles that can affect their results. Since the background and environmental noise reduces the efficiency of music fingerprinting algorithms, behavioral analysis of fingerprinting algorithms is performed using audio samples of different languages and under different environmental conditions. The results of music fingerprint classification are more successful when deep learning techniques for classification are used. The testing of the acoustic feature modeling and music fingerprinting algorithms is performed using the standard dataset of iKala, MusicBrainz and MIR-1K.

2021-11-29
Qu, Yanfeng, Chen, Gong, Liu, Xin, Yan, Jiaqi, Chen, Bo, Jin, Dong.  2020.  Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
2021-07-07
Beghdadi, Azeddine, Bezzine, Ismail, Qureshi, Muhammad Ali.  2020.  A Perceptual Quality-driven Video Surveillance System. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1–6.
Video-based surveillance systems often suffer from poor-quality video in an uncontrolled environment. This may strongly affect the performance of high-level tasks such as visual tracking, abnormal event detection or more generally scene understanding and interpretation. This work aims to demonstrate the impact and the importance of video quality in video surveillance systems. Here, we focus on the most important challenges and difficulties related to the perceptual quality of the acquired or transmitted images/videos in uncontrolled environments. In this paper, we propose an architecture of a smart surveillance system that incorporates the perceptual quality of acquired scenes. We study the behaviour of some state-of-the-art video quality metrics on some original and distorted sequences from a dedicated surveillance dataset. Through this study, it has been shown that some of the state-of-the-art image/video quality metrics do not work in the context of video-surveillance. This study opens a new research direction to develop the video quality metrics in the context of video surveillance and also to propose a new quality-driven framework of video surveillance system.
2021-03-17
Fu, T., Zhen, W., Qian, X. Z..  2020.  A Study of Evaluation Methods of WEB Security Threats Based on Multi-stage Attack. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:1457—1461.
Web application services have gradually become an important support of Internet services, but are also facing increasingly serious security problems. It is extremely necessary to evaluate the security of Web application services to deal with attacks against them effectively. In this paper, in view of the characteristics of the current attack of Web application services, a Web security analysis model based on the kill chain is established, and the possible attacks against Web application services are analyzed in depth from the perspective of the kill chain. Then, the security of Web application services is evaluated in a quantitative manner. In this way, it can make up the defects of insufficient inspection by the existing security vulnerability model and the security specification of the tracking of Web application services, so as to realize the objective and scientific evaluation of the security state of Web application services.
2021-08-31
Castro-Coronado, Habib, Antonino-Daviu, Jose, Quijano-López, Alfredo, Fuster-Roig, Vicente, Llovera-Segovia, Pedro.  2020.  Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
2021-11-29
Gao, Hongjun, Liu, Youbo, Liu, Zhenyu, Xu, Song, Wang, Renjun, Xiang, Enmin, Yang, Jie, Qi, Mohan, Zhao, Yinbo, Pan, Hongjin et al..  2020.  Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.