Biblio

Found 459 results

Filters: First Letter Of Last Name is Q  [Clear All Filters]
2022-03-23
Yaning, Guo, Qianwen, Wang.  2021.  Analysis of Collaborative Co-Governance Path of Public Crisis Emergency Management in An All-Media Environment: —Theoretical Research Based on Multi-Agent. 2021 International Conference on Management Science and Software Engineering (ICMSSE). :235–238.
Multi-Agent system has the advantages of information sharing, knowledge accumulation and system stability, which is consistent with the concept of collaborative co-governance of public crisis management, and provides support for dealing with sudden public crises. Based on the background of the all-media environment, this study introduces the Internet-driven mass data management (“ crowdsourcing” crisis management) as a part of the crisis response system to improve the quality of information resource sharing. Crowdsourcing crisis management and Multi-Agent collaborative co-governance mechanism are combined with each other, so as to achieve a higher level of joint prevention and control mechanism, and explore how to effectively share information resources and emergency management resources across regions and departments in public crisis events.
2022-02-22
Mingyang, Qiu, Qingwei, Meng, Yan, Fu, Xikang, Wang.  2021.  Analysis of Zero-Day Virus Suppression Strategy based on Moving Target Defense. 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—4.
In order to suppress the spread of zero-day virus in the network effectively, a zero-day virus suppression strategy was proposed. Based on the mechanism of zero-day virus transmission and the idea of platform dynamic defense, the corresponding methods of virus transmission suppression are put forward. By changing the platform switching frequency, the scale of zero-day virus transmission and its inhibition effect are simulated in a small-world network model. Theory and computer simulation results show that the idea of platform switching can effectively restrain the spread of virus.
2022-02-07
Qin, Zhenhui, Tong, Rui, Wu, Xingjun, Bai, Guoqiang, Wu, Liji, Su, Linlin.  2021.  A Compact Full Hardware Implementation of PQC Algorithm NTRU. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :792–797.
With the emergence and development of quantum computers, the traditional public-key cryptography (PKC) is facing the risk of being cracked. In order to resist quantum attacks and ensure long-term communication security, NIST launched a global collection of Post Quantum Cryptography (PQC) standards in 2016, and it is currently in the third round of selection. There are three Lattice-based PKC algorithms that stand out, and NTRU is one of them. In this article, we proposed the first complete and compact full hardware implementation of NTRU algorithm submitted in the third round. By using one structure to complete the design of the three types of complex polynomial multiplications in the algorithm, we achieved better performance while reducing area costs.
2022-03-08
Kai, Yun, Qiang, Huang, Yixuan, Ma.  2021.  Construction of Network Security Perception System Using Elman Neural Network. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :187—190.
The purpose of the study is to improve the security of the network, and make the state of network security predicted in advance. First, the theory of neural networks is studied, and its shortcomings are analyzed by the standard Elman neural network. Second, the layers of the feedback nodes of the Elman neural network are improved according to the problems that need to be solved. Then, a network security perception system based on GA-Elman (Genetic Algorithm-Elman) neural network is proposed to train the network by global search method. Finally, the perception ability is compared and analyzed through the model. The results show that the model can accurately predict network security based on the experimental charts and corresponding evaluation indexes. The comparative experiments show that the GA-Elman neural network security perception system has a better prediction ability. Therefore, the model proposed can be used to predict the state of network security and provide early warnings for network security administrators.
2022-08-26
Prakash, Jay, Yu, Clarice Chua Qing, Thombre, Tanvi Ravindra, Bytes, Andrei, Jubur, Mohammed, Saxena, Nitesh, Blessing, Lucienne, Zhou, Jianying, Quek, Tony Q.S.  2021.  Countering Concurrent Login Attacks in “Just Tap” Push-based Authentication: A Redesign and Usability Evaluations. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :21—36.
In this paper, we highlight a fundamental vulnerability associated with the widely adopted “Just Tap” push-based authentication in the face of a concurrency attack, and propose the method REPLICATE, a redesign to counter this vulnerability. In the concurrency attack, the attacker launches the login session at the same time the user initiates a session, and the user may be fooled, with high likelihood, into accepting the push notification which corresponds to the attacker's session, thinking it is their own. The attack stems from the fact that the login notification is not explicitly mapped to the login session running on the browser in the Just Tap approach. REPLICATE attempts to address this fundamental flaw by having the user approve the login attempt by replicating the information presented on the browser session over to the login notification, such as by moving a key in a particular direction, choosing a particular shape, etc. We report on the design and a systematic usability study of REPLICATE. Even without being aware of the vulnerability, in general, participants placed multiple variants of REPLICATE in competition to the Just Tap and fairly above PIN-based authentication.
2022-04-25
Li, Yuezun, Zhang, Cong, Sun, Pu, Ke, Lipeng, Ju, Yan, Qi, Honggang, Lyu, Siwei.  2021.  DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
2022-11-18
Sun, Xiaohan, Cheng, Yunchang, Qu, Xiaojie, Li, Hang.  2021.  Design and Implementation of Security Test Pipeline based on DevSecOps. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:532—535.
In recent years, a variety of information security incidents emerge in endlessly, with different types. Security vulnerability is an important factor leading to the security risk of information system, and is the most common and urgent security risk in information system. The research goal of this paper is to seamlessly integrate the security testing process and the integration process of software construction, deployment, operation and maintenance. Through the management platform, the security testing results are uniformly managed and displayed in reports, and the project management system is introduced to develop, regress and manage the closed-loop security vulnerabilities. Before the security vulnerabilities cause irreparable damage to the information system, the security vulnerabilities are found and analyzed Full vulnerability, the formation of security vulnerability solutions to minimize the threat of security vulnerabilities to the information system.
2021-12-20
Yixuan, Zhang, Qiwei, Xu, Sheng, Long, Zhihao, Cheng, Chao, Zhi.  2021.  Design of a New Micro Linear Actuator Owning Two-phase No-cross Planar Coils. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–11.
This paper presents a new micro linear actuator design. The North-South (NS) permanent magnet array configuration is assembled as the mobile part. The fixed part is designed to two-phase planar coils with no crossings avoiding interferences between overlapped conductors. The analytical calculation of the permanent magnet array verifies the feasibility of the finite element simulation. And then electromagnetic optimizations based on simulation to maximize the average thrust and minimize thrust ripple. In order to deal with millimeter level structure design, a microfabrication approach is adopted to process the new micro linear actuator in silicon material. The new micro linear actuator is able to perform millimeter level displacement strokes along a single axis in the horizontal plane. The experimental results demonstrate that the new micro linear actuator is capable of delivering variable strokes up to 5 mm with a precision error of 30 μm in position closed loop control and realizes the maximum velocity of 26.62mm/s with maximum error of 4.92%.
2022-03-01
Chen, Xuejun, Dong, Ping, Zhang, Yuyang, Qiao, Wenxuan, Yin, Chenyang.  2021.  Design of Adaptive Redundant Coding Concurrent Multipath Transmission Scheme in High-speed Mobile Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2176–2179.
As we all know, network coding can significantly improve the throughput and reliability of wireless networks. However, in the high-speed mobile environment, the packet loss rate of different wireless links may vary greatly due to the time-varying network state, which makes the adjustment of network coding redundancy very important. Because the network coding redundancy is too large, it will lead to excessive overhead and reduce the effective throughput. If the network coding redundancy is too small, it will lead to insufficient decoding, which will also reduce the effective throughput. In the design of multi-path transmission scheduling scheme, we introduce adaptive redundancy network coding scheme. By using multiple links to aggregate network bandwidth, we choose appropriate different coding redundancy for different links to resist the performance loss caused by link packet loss. The simulation results show that when the link packet loss rate is greatly different, the mechanism can not only ensure the transmission reliability, but also greatly reduce the total network redundancy to improve the network throughput very effectively.
2022-06-08
Zhang, Guangxin, Zhao, Liying, Qiao, Dongliang, Shang, Ziwen, Huang, Rui.  2021.  Design of transmission line safety early warning system based on big data variable analysis. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). :90–93.
In order to improve the accuracy and efficiency of transmission line safety early warning, a transmission line safety early warning system based on big data variable analysis is proposed. Firstly, the overall architecture of the system is designed under the B / S architecture. Secondly, in the hardware part of the system, the security data real-time monitoring module, data transmission module and security warning module are designed to meet the functional requirements of the system. Finally, in the system software design part, the big data variable analysis method is used to calculate the hidden danger of transmission line safety, so as to improve the effectiveness of transmission safety early warning. The experimental results show that, compared with the traditional security early warning system, the early warning accuracy and efficiency of the designed system are significantly improved, which can ensure the safe operation of the transmission line.
2022-01-25
Qian, Xinyuan, Wu, Wenyuan.  2021.  An Efficient Ciphertext Policy Attribute-Based Encryption Scheme from Lattices and Its Implementation. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :732–742.
Lattice-based Attribute-based encryption is a well-known cryptographic mechanism that can resist quantum attacks and has the ability of fine-grained access control, and it has a wide range of application scenarios in current Internet of Thing (IoT) era. However, lack of efficiency and existing the problem of large ciphertext expansion rate are the main disadvantages impede the applications of this mechanism. Thus, we propose an efficient and practical ciphertext policy attribute-based encryption (CP-ABE) scheme from lattices in the paper. In this scheme, to make the secret key reusable, we adjust access tree and propose a basic access tree structure, which can be converted from disjunctive normal form, and combine it with a light post-quantum scheme of Kyber. In addition, the compression method and plaintext expansion method are introduced to optimize the scheme. Our CP-ABE scheme is secure against chosen plaintext attack under the hardness of module learning with errors problem. We implement our scheme and compare it with three recent related schemes in terms of security, function and communication cost. Experiments and comparisons show that our CP-ABE scheme has advantages in high encryption efficiency, small matrix dimension, small key sizes, and low ciphertext expansion rate, which has some merit in practice.
2022-02-04
Cao, Wenbin, Qi, Xuanwei, Wang, Song, Chen, Ming, Yin, Xianggen, Wen, Minghao.  2021.  The Engineering Practical Calculation Method of Circulating Current in YD-connected Transformer. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). :1–5.
The circulating current in the D-winding may cause primary current waveform distortion, and the reliability of the restraint criterion based on the typical magnetizing inrush current characteristics will be affected. The magnetizing inrush current with typical characteristics is the sum of primary current and circulating current. Using the circulating current to compensate the primary current can improve the reliability of the differential protection. When the phase is not saturated, the magnetizing inrush current is about zero. Therefore, the primary current of unsaturated phase can be replaced by the opposite of the circulating current. Based on this, an engineering practical calculation method for circulating current is proposed. In the method, the segmented primary currents are used to replace the circulating current. Phasor analysis is used to demonstrate the application effect of this method when remanence coefficients are different. The method is simple and practical, and has strong applicability and high reliability. Simulation and recorded waveforms have verified the effectiveness of the method.
2022-05-19
Wu, Peiyan, Chen, Wenbin, Wu, Hualin, Qi, Ke, Liu, Miao.  2021.  Enhanced Game Theoretical Spectrum Sharing Method Based on Blockchain Consensus. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–7.
The limited spectrum resources need to provide safe and efficient spectrum service for the intensive users. Malicious spectrum work nodes will affect the normal operation of the entire system. Using the blockchain model, consensus algorithm Praft based on optimized Raft is to solve the consensus problem in Byzantine environment. Message digital signatures give the spectrum node some fault tolerance and tamper resistance. Spectrum sharing among spectrum nodes is carried out in combination with game theory. The existing game theoretical algorithm does not consider the influence of spectrum occupancy of primary users and cognitive users on primary users' utility and enthusiasm at the same time. We elicits a reinforcement factor and analyzes the effect of the reinforcement factor on strategy performance. This scheme optimizes the previous strategy so that the profits of spectrum nodes are improved and a good Nash equilibrium is shown, while Praft solves the Byzantine problem left by Raft.
2022-07-05
Cao, HongYuan, Qi, Chao.  2021.  Facial Expression Study Based on 3D Facial Emotion Recognition. 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS). :375—381.
Teaching evaluation is an indispensable key link in the modern education model. Its purpose is to promote learners' cognitive and non-cognitive development, especially emotional development. However, today's education has increasingly neglected the emotional process of learners' learning. Therefore, a method of using machines to analyze the emotional changes of learners during learning has been proposed. At present, most of the existing emotion recognition algorithms use the extraction of two-dimensional facial features from images to perform emotion prediction. Through research, it is found that the recognition rate of 2D facial feature extraction is not optimal, so this paper proposes an effective the algorithm obtains a single two-dimensional image from the input end and constructs a three-dimensional face model from the output end, thereby using 3D facial information to estimate the continuous emotion of the dimensional space and applying this method to an online learning system. Experimental results show that the algorithm has strong robustness and recognition ability.
2022-08-26
Pai, Zhang, Qi, Yang.  2021.  Investigation of Time-delay Nonlinear Dynamic System in Batch Fermentation with Differential Evolution Algorithm. 2021 International Conference on Information Technology and Biomedical Engineering (ICITBE). :101–104.
Differential evolution algorithm is an efficient computational method that uses population crossover and variation to achieve high-quality solutions. The algorithm is simple in principle and fast in solving global solutions, so it has been widely used in complex optimization problems. In this paper, we applied the differential evolution algorithm to a time-delay dynamic system for microbial fermentation of 1,3-propanediol and obtained an average error of 22.67% comparing to baseline error of 48.53%.
2022-02-04
Xie, Xin, Liu, Xiulong, Guo, Song, Qi, Heng, Li, Keqiu.  2021.  A Lightweight Integrity Authentication Approach for RFID-enabled Supply Chains. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
Major manufacturers and retailers are increasingly using RFID systems in supply-chain scenarios, where theft of goods during transport typically causes significant economic losses for the consumer. Recent sample-based authentication methods attempt to use a small set of random sample tags to authenticate the integrity of the entire tag population, which significantly reduces the authentication time at the expense of slightly reduced reliability. The problem is that it still incurs extensive initialization overhead when writing the authentication information to all of the tags. This paper presents KTAuth, a lightweight integrity authentication approach to efficiently and reliably detect missing tags and counterfeit tags caused by stolen attacks. The competitive advantage of KTAuth is that it only requires writing the authentication information to a small set of deterministic key tags, offering a significant reduction in initialization costs. In addition, KTAuth strictly follows the C1G2 specifications and thus can be deployed on Commercial-Off-The-Shelf RFID systems. Furthermore, KTAuth proposes a novel authentication chain mechanism to verify the integrity of tags exclusively based on data stored on them. To evaluate the feasibility and deployability of KTAuth, we implemented a small-scale prototype system using mainstream RFID devices. Using the parameters achieved from the real experiments, we also conducted extensive simulations to evaluate the performance of KTAuth in large-scale RFID systems.
2022-07-01
Wang, Xin, Ma, Xiaobo, Qu, Jian.  2021.  A Link Flooding Attack Detection Method based on Non-Cooperative Active Measurement. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :172–177.
In recent years, a new type of DDoS attacks against backbone routing links have appeared. They paralyze the communication network of a large area by directly congesting the key routing links concerning the network accessibility of the area. This new type of DDoS attacks make it difficult for traditional countermeasures to take effect. This paper proposes and implements an attack detection method based on non-cooperative active measurement. Experiments show that our detection method can efficiently perceive changes of network link performance and assist in identifying such new DDoS attacks. In our testbed, the network anomaly detection accuracy can reach 93.7%.
2022-02-22
Qiu, Yihao, Wu, Jun, Mumtaz, Shahid, Li, Jianhua, Al-Dulaimi, Anwer, Rodrigues, Joel J. P. C..  2021.  MT-MTD: Muti-Training based Moving Target Defense Trojaning Attack in Edged-AI network. ICC 2021 - IEEE International Conference on Communications. :1—6.
The evolution of deep learning has promoted the popularization of smart devices. However, due to the insufficient development of computing hardware, the ability to conduct local training on smart devices is greatly restricted, and it is usually necessary to deploy ready-made models. This opacity makes smart devices vulnerable to deep learning backdoor attacks. Some existing countermeasures against backdoor attacks are based on the attacker’s ignorance of defense. Once the attacker knows the defense mechanism, he can easily overturn it. In this paper, we propose a Trojaning attack defense framework based on moving target defense(MTD) strategy. According to the analysis of attack-defense game types and confrontation process, the moving target defense model based on signaling game was constructed. The simulation results show that in most cases, our technology can greatly increase the attack cost of the attacker, thereby ensuring the availability of Deep Neural Networks(DNN) and protecting it from Trojaning attacks.
2022-09-20
Herwanto, Guntur Budi, Quirchmayr, Gerald, Tjoa, A Min.  2021.  A Named Entity Recognition Based Approach for Privacy Requirements Engineering. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :406—411.
The presence of experts, such as a data protection officer (DPO) and a privacy engineer is essential in Privacy Requirements Engineering. This task is carried out in various forms including threat modeling and privacy impact assessment. The knowledge required for performing privacy threat modeling can be a serious challenge for a novice privacy engineer. We aim to bridge this gap by developing an automated approach via machine learning that is able to detect privacy-related entities in the user stories. The relevant entities include (1) the Data Subject, (2) the Processing, and (3) the Personal Data entities. We use a state-of-the-art Named Entity Recognition (NER) model along with contextual embedding techniques. We argue that an automated approach can assist agile teams in performing privacy requirements engineering techniques such as threat modeling, which requires a holistic understanding of how personally identifiable information is used in a system. In comparison to other domain-specific NER models, our approach achieves a reasonably good performance in terms of precision and recall.
2022-07-01
Que, Jianming, Li, Hui, Bai, He, Lin, Lihong, Liew, Soung-Yue, Wuttisittikulkij, Lunchakorn.  2021.  A Network Architecture Containing Both Push and Pull Semantics. 2021 7th International Conference on Computer and Communications (ICCC). :2211—2216.
Recently, network usage has evolved from resource sharing between hosts to content distribution and retrieval. Some emerging network architectures, like Named Data Networking (NDN), focus on the design of content-oriented network paradigm. However, these clean-slate network architectures are difficult to be deployed progressively and deal with the new communication requirements. Multi-Identifier Network (MIN) is a promising network architecture that contains push and pull communication semantics and supports the resolution, routing and extension of multiple network identifiers. MIN's original design was proposed in 2019, which has been improved over the past two years. In this paper, we present the current design and implementation of MIN. We also propose a fallback-based identifier extension scheme to improve the extensibility of the network. We demonstrate that MIN outperforms NDN in the scenario of progressive deployment via IP tunnel.
2022-09-30
Asare, Bismark Tei, Quist-Aphetsi, Kester, Nana, Laurent, Simpson, Grace.  2021.  A nodal Authentication IoT Data Model for Heterogeneous Connected Sensor Nodes Within a Blockchain Network. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :65–71.
Modern IoT infrastructure consists of different sub-systems, devices, applications, platforms, varied connectivity protocols with distinct operating environments scattered across different subsystems within the whole network. Each of these subsystems of the global system has its peculiar computational and security challenges. A security loophole in one subsystem has a directly negative impact on the security of the whole system. The nature and intensity of recent cyber-attacks within IoT networks have increased in recent times. Blockchain technology promises several security benefits including a decentralized authentication mechanism that addresses almost readily the challenges with a centralized authentication mechanism that has the challenges of introducing a single point of failure that affects data and system availability anytime such systems are compromised. The different design specifications and the unique functional requirements for most IoT devices require a strong yet universal authentication mechanism for multimedia data that assures an additional security layer to IoT data. In this paper, the authors propose a decentralized authentication to validate data integrity at the IoT node level. The proposed mechanism guarantees integrity, privacy, and availability of IoT node data.
2022-09-29
Zhang, Zhengjun, Liu, Yanqiang, Chen, Jiangtao, Qi, Zhengwei, Zhang, Yifeng, Liu, Huai.  2021.  Performance Analysis of Open-Source Hypervisors for Automotive Systems. 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS). :530–537.
Nowadays, automotive products are intelligence intensive and thus inevitably handle multiple functionalities under the current high-speed networking environment. The embedded virtualization has high potentials in the automotive industry, thanks to its advantages in function integration, resource utilization, and security. The invention of ARM virtualization extensions has made it possible to run open-source hypervisors, such as Xen and KVM, for embedded applications. Nevertheless, there is little work to investigate the performance of these hypervisors on automotive platforms. This paper presents a detailed analysis of different types of open-source hypervisors that can be applied in the ARM platform. We carry out the virtualization performance experiment from the perspectives of CPU, memory, file I/O, and some OS operation performance on Xen and Jailhouse. A series of microbenchmark programs have been designed, specifically to evaluate the real-time performance of various hypervisors and the relevant overhead. Compared with Xen, Jailhouse has better latency performance, stable latency, and little interference jitter. The performance experiment results help us summarize the advantages and disadvantages of these hypervisors in automotive applications.
2022-02-24
Gao, Wei, Guo, Shangwei, Zhang, Tianwei, Qiu, Han, Wen, Yonggang, Liu, Yang.  2021.  Privacy-Preserving Collaborative Learning with Automatic Transformation Search. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :114–123.
Collaborative learning has gained great popularity due to its benefit of data privacy protection: participants can jointly train a Deep Learning model without sharing their training sets. However, recent works discovered that an adversary can fully recover the sensitive training samples from the shared gradients. Such reconstruction attacks pose severe threats to collaborative learning. Hence, effective mitigation solutions are urgently desired.In this paper, we propose to leverage data augmentation to defeat reconstruction attacks: by preprocessing sensitive images with carefully-selected transformation policies, it becomes infeasible for the adversary to extract any useful information from the corresponding gradients. We design a novel search method to automatically discover qualified policies. We adopt two new metrics to quantify the impacts of transformations on data privacy and model usability, which can significantly accelerate the search speed. Comprehensive evaluations demonstrate that the policies discovered by our method can defeat existing reconstruction attacks in collaborative learning, with high efficiency and negligible impact on the model performance.
2022-05-06
Qi, Xingyue, Lin, Chuan, Wang, Zhaohui, Du, Jiaxin, Han, Guangjie.  2021.  Proactive Alarming-enabled Path Planning for Multi-AUV-based Underwater IoT Systems. 2021 Computing, Communications and IoT Applications (ComComAp). :263—267.
The ongoing expansion of underwater Internet of Things techniques promote diverse categories of maritime intelligent systems, e.g., Underwater Acoustic Sensor Networks (UASNs), Underwater Wireless Networks (UWNs), especially multiple Autonomous Underwater Vehicle (AUV) based UWNs have produced many civil and military applications. To enhance the network management and scalability, in this paper, the technique of Software-Defined Networking (SDN) technique is introduced, leading to the paradigm of Software-Defined multi-AUV-based UWNs (SD-UWNs). With SD-UWNs, the network architecture is divided into three functional layers: data layer, control layer, and application layer, and the network administration is re-defined by a framework of software-defined beacon. To manage the network, a control model based on artificial potential field and network topology theory is constructed. On account of the efficient data sharing ability of SD-UWNs, a proactive alarming-enabled path planning scheme is proposed, wherein all potential categories of obstacle avoidance scenes are taken into account. Evaluation results indicate that the proposed SD-UWN is more efficient in scheduling the cooperative network function than the traditional approaches and can secure exact path planning.
2022-06-08
Guo, Jiansheng, Qi, Liang, Suo, Jiao.  2021.  Research on Data Classification of Intelligent Connected Vehicles Based on Scenarios. 2021 International Conference on E-Commerce and E-Management (ICECEM). :153–158.
The intelligent connected vehicle industry has entered a period of opportunity, industry data is accumulating rapidly, and the formulation of industry standards to regulate big data management and application is imminent. As the basis of data security, data classification has received unprecedented attention. By combing through the research and development status of data classification in various industries, this article combines industry characteristics and re-examines the framework of industry data classification from the aspects of information security and data assetization, and tries to find the balance point between data security and data value. The intelligent networked automobile industry provides support for big data applications, this article combines the characteristics of the connected vehicle industry, re-examines the data characteristics of the intelligent connected vehicle industry from the 2 aspects as information security and data assetization, and eventually proposes a scene-based hierarchical framework. The framework includes the complete classification process, model, and quantifiable parameters, which provides a solution and theoretical endorsement for the construction of a big data automatic classification system for the intelligent connected vehicle industry and safe data open applications.