Biblio
Multimedia authentication is an integral part of multimedia signal processing in many real-time and security sensitive applications, such as video surveillance. In such applications, a full-fledged video digital rights management (DRM) mechanism is not applicable due to the real time requirement and the difficulties in incorporating complicated license/key management strategies. This paper investigates the potential of multimedia authentication from a brand new angle by employing hardware-based security primitives, such as physical unclonable functions (PUFs). We show that the hardware security approach is not only capable of accomplishing the authentication for both the hardware device and the multimedia stream but, more importantly, introduce minimum performance, resource, and power overhead. We justify our approach using a prototype PUF implementation on Xilinx FPGA boards. Our experimental results on the real hardware demonstrate the high security and low overhead in multimedia authentication obtained by using hardware security approaches.
This article deals with the estimation of magnet losses in a permanent-magnet motor inserted in a nut-runner. This type of machine has interesting features such as being two-pole, slot-less and running at a high speed (30000 rpm). Two analytical models were chosen from the literature. A numerical estimation of the losses with 2D Finite Element Method was carried out. A detailed investigation of the effect of simulation settings (e.g., mesh size, time-step, remanence flux density in the magnet, superposition of the losses, etc.) was performed. Finally, calculation of losses with 3D-FEM were also run in order to compare the calculated losses with both analytical and 2D-FEM results. The estimation of the losses focuses on a range of frequencies between 10 and 100 kHz.
This paper presents a multi-year undergraduate computing capstone project that holistically contributes to the development of cybersecurity knowledge and skills in non-computing high school and college students. We describe the student-built Vulnerable Web Server application, which is a system that packages instructional materials and pre-built virtual machines to provide lessons on cybersecurity to non-technical students. The Vulnerable Web Server learning materials have been piloted at several high schools and are now integrated into multiple security lessons in an intermediate, general education information technology course at the United States Military Academy. Our paper interweaves a description of the Vulnerable Web Server materials with the senior capstone design process that allowed it to be built by undergraduate information technology and computer science students, resulting in a valuable capstone learning experience. Throughout the paper, a call is made for greater emphasis on educating the non-technical user.
The demand for trained cybersecurity operators is growing more quickly than traditional programs in higher education can fill. At the same time, unemployment for returning military veterans has become a nationally discussed problem. We describe the design and launch of New Skills for a New Fight (NSNF), an intensive, one-year program to train military veterans for the cybersecurity field. This non-traditional program, which leverages experience that veterans gained in military service, includes recruitment and selection, a base of knowledge in the form of four university courses in a simultaneous cohort mode, a period of hands-on cybersecurity training, industry certifications and a practical internship in a Security Operations Center (SOC). Twenty veterans entered this pilot program in January of 2016, and will complete in less than a year's time. Initially funded by a global financial services company, the program provides veterans with an expense-free preparation for an entry-level cybersecurity job.
MPI includes all processes in MPI\_COMM\_WORLD; this is untenable for reasons of scale, resiliency, and overhead. This paper offers a new approach, extending MPI with a new concept called Sessions, which makes two key contributions: a tighter integration with the underlying runtime system; and a scalable route to communication groups. This is a fundamental change in how we organise and address MPI processes that removes well-known scalability barriers by no longer requiring the global communicator MPI\_COMM\_WORLD.
Technological changes bring great efficiencies and opportunities; however, they also bring new threats and dangers that users are often ill prepared to handle. Some individuals have training at work or school while others have family or friends to help them. However, there are few widely known or ubiquitous educational programs to inform and motivate users to develop safe cybersecurity practices. Additionally, little is known about learning strategies in this domain. Understanding how active Internet users have learned their security practices can give insight into more effective learning methods. I surveyed 800 online labor workers to discover their learning processes. They shared how they had to construct their own schema and negotiate meaning in a complex domain. Findings suggest a need to help users build a dynamic mental model of security. Participants recommend encouraging participatory and constructive learning, multi-model dissemination, and ubiquitous opportunities for learning security behaviors.
With the increasingly pervasive role of software in society, security is becoming an important quality concern, emphasizing security by design, but it requires intensive specialization. Security in families of systems is even harder, as diverse variants of security solutions must be considered, with even different security goals per product. Furthermore, security is not a static object but a moving target, adding variability. For this, an approach to systematically address security concerns in software product lines is needed. It should consider security separate from other variability dimensions. The main challenges to realize this are: (i) expressing security and its variability, (ii) selecting the right solution, (iii) properly instantiating a solution, and (iv) verifying and validating it. In this paper, we present our research agenda towards addressing the aforementioned challenges.
This panel will discuss and debate what role(s) the information technology discipline should have in cybersecurity. Diverse viewpoints will be considered including current and potential ACM curricular recommendations, current and potential ABET and NSA accreditation criteria, the emerging cybersecurity discipline(s), consideration of government frameworks, the need for a multi-disciplinary approach to cybersecurity, and what aspects of cybersecurity should be under information technology's purview.
Platform as a Service (PaaS) provides middleware resources to cloud customers. As demand for PaaS services increases, so do concerns about the security of PaaS. This paper discusses principal PaaS security and integrity requirements, and vulnerabilities and the corresponding countermeasures. We consider three core cloud elements: multi-tenancy, isolation, and virtualization and how they relate to PaaS services and security trends and concerns such as user and resource isolation, side-channel vulnerabilities in multi-tenant environments, and protection of sensitive data
The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.
As mobile devices increasingly become bigger in terms of display and reliable in delivering paid entertainment and video content, we also see a rise in the presence of mobile applications that attempt to profit by streaming pirated content to unsuspected end-users. These applications are both paid and free and in the case of free applications, the source of funding appears to be advertisements that are displayed while the content is streamed to the device. In this paper, we assess the extent of content copyright infringement for mobile markets that span multiple platforms (iOS, Android, and Windows Mobile) and cover both official and unofficial mobile markets located across the world. Using a set of search keywords that point to titles of paid streaming content, we discovered 8,592 Android, 5,550 iOS, and 3,910 Windows mobile applications that matched our search criteria. Out of those applications, hundreds had links to either locally or remotely stored pirated content and were not developed, endorsed, or, in many cases, known to the owners of the copyrighted contents. We also revealed the network locations of 856,717 Uniform Resource Locators (URLs) pointing to back-end servers and cyber-lockers used to communicate the pirated content to the mobile application.
Distributed Denial of Service (DoS) attacks is one of the major threats and among the hardest security problems in the Internet world. In this paper, we study the impact of a UDP flood attack on TCP throughputs, round-trip time, and CPU utilization on the latest version of Windows and Linux platforms, namely, Windows Server 2012 and Linux Ubuntu 13. This paper also evaluates several defense mechanisms including Access Control Lists (ACLs), Threshold Limit, Reverse Path Forwarding (IP Verify), and Network Load Balancing. Threshold Limit defense gave better results than the other solutions.
Security breaches and attacks are becoming a more critical and, simultaneously, a challenging problems for many firms in networked supply chains. A game theory-based model is developed to investigate how interdependent feature of information security risk influence the optimal strategy of firms to invest in information security. The equilibrium levels of information security investment under non-cooperative game condition are compared with socially optimal solutions. The results show that the infectious risks often induce firms to invest inefficiently whereas trust risks lead to overinvest in information security. We also find that firm's investment may not necessarily monotonous changes with infectious risks and trust risks in a centralized case. Furthermore, relative to the socially efficient level, firms facing infectious risks may invest excessively depending on whether trust risks is large enough.
This article describes our recent progress on the development of rigorous analytical metrics for assessing the threat-performance trade-off in control systems. Computing systems that monitor and control physical processes are now pervasive, yet their security is frequently an afterthought rather than a first-order design consideration. We investigate a rational basis for deciding—at the design level—how much investment should be made to secure the system.