Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2015-04-27
2018-05-14
Antonio Iannopollo, Pierluigi Nuzzo, Stavros Tripakis, Alberto L. Sangiovanni{-}Vincentelli.  2014.  Library-based scalable refinement checking for contract-based design. Design, Automation {&} Test in Europe Conference {&} Exhibition, {DATE} 2014, Dresden, Germany, March 24-28, 2014. :1–6.
2018-05-27
2015-01-13
Slavin, Rocky, Lehker, J.M., Niu, Jianwei, Breaux, Travis.  2014.  Managing Security Requirement Patterns Using Feature Diagram Hierarchies. IEEE 22nd International Requirements Engineering Conference.

Security requirements patterns represent reusable security practices that software engineers can apply to improve security in their system. Reusing best practices that others have employed could have a number of benefits, such as decreasing the time spent in the requirements elicitation process or improving the quality of the product by reducing product failure risk. Pattern selection can be difficult due to the diversity of applicable patterns from which an analyst has to choose. The challenge is that identifying the most appropriate pattern for a situation can be cumbersome and time-consuming. We propose a new method that combines an inquiry-cycle based approach with the feature diagram notation to review only relevant patterns and quickly select the most appropriate patterns for the situation. Similar to patterns themselves, our approach captures expert knowledge to relate patterns based on decisions made by the pattern user. The resulting pattern hierarchies allow users to be guided through these decisions by questions, which introduce related patterns in order to help the pattern user select the most appropriate patterns for their situation, thus resulting in better requirement generation. We evaluate our approach using access control patterns in a pattern user study.

2018-05-23
Pajic, M., Mangharam, R., Sokolsky, O., others.  2014.  Model-Driven Safety Analysis of Closed-Loop Medical Systems. IEEE Transactions on Industrial Informatics. 10:3–16.
2015-05-01
Sardana, Noel, Cohen, Robin.  2014.  Modeling Agent Trustworthiness with Credibility for Message Recommendation in Social Networks. Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems. :1423–1424.

This paper presents a framework for multiagent systems trust modeling that reasons about both user credibility and user similarity. Through simulation, we are able to show that our approach works well in social networking environments by presenting messages to users with high predicted benefit.

2015-03-03
Smith, Andrew, Vorobeychik, Yevgeniy, Letchford, Joshua.  2014.  Multi-Defender Security Games on Networks. SIGMETRICS Perform. Eval. Rev.. 41:4–7.

Stackelberg security game models and associated computational tools have seen deployment in a number of high- consequence security settings, such as LAX canine patrols and Federal Air Marshal Service. This deployment across essentially independent agencies raises a natural question: what global impact does the resulting strategic interaction among the defenders, each using a similar model, have? We address this question in two ways. First, we demonstrate that the most common solution concept of Strong Stackelberg equilibrium (SSE) can result in significant under-investment in security entirely because SSE presupposes a single defender. Second, we propose a framework based on a different solution concept which incorporates a model of interdependencies among targets, and show that in this framework defenders tend to over-defend, even under significant positive externalities of increased defense.

2018-05-11
Taha, Ahmad F, Elmahdi, Ahmed, Panchal, Jitesh H, Sun, Dengfeng.  2014.  Networked unknown input observer analysis and design for time-delay systems. Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on. :3278–3283.
2015-05-06
Wang, Zhiwei, Sun, Guozi, Chen, Danwei.  2014.  A New Definition of Homomorphic Signature for Identity Management in Mobile Cloud Computing. J. Comput. Syst. Sci.. 80:546–553.

In this paper, we define a new homomorphic signature for identity management in mobile cloud computing. A mobile user firstly computes a full signature on all his sensitive personal information (SPI), and stores it in a trusted third party (TTP). During the valid period of his full signature, if the user wants to call a cloud service, he should authenticate him to the cloud service provider (CSP) through TTP. In our scheme, the mobile user only needs to send a  vector to the access controlling server (TTP). The access controlling server who doesnʼt know the secret key can compute a partial signature on a small part of userʼs SPI, and then sends it to the CSP. We give a formal secure definition of this homomorphic signature, and construct a scheme from GHR signature. We prove that our scheme is secure under GHR signature.

2018-05-27
2018-05-11
Elmahdi, Ahmed, Taha, Ahmad F, Sun, Dengfeng.  2014.  Observer-based decentralized control scheme for stability analysis of networked systems. Control & Automation (ICCA), 11th IEEE International Conference on. :857–862.
Elmahdi, Ahmed, Taha, Ahmad F, Sun, Dengfeng, Panchal, Jitesh H.  2014.  An optimal general purpose scheduler for networked control systems. Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on. :234–239.
2014-09-17
Cao, Phuong, Li, Hongyang, Nahrstedt, Klara, Kalbarczyk, Zbigniew, Iyer, Ravishankar, Slagell, Adam J..  2014.  Personalized Password Guessing: A New Security Threat. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :22:1–22:2.

This paper presents a model for generating personalized passwords (i.e., passwords based on user and service profile). A user's password is generated from a list of personalized words, each word is drawn from a topic relating to a user and the service in use. The proposed model can be applied to: (i) assess the strength of a password (i.e., determine how many guesses are used to crack the password), and (ii) generate secure (i.e., contains digits, special characters, or capitalized characters) yet easy to memorize passwords.

2015-01-11
S. Jain, T. Ta, J.S. Baras.  2014.  Physical Layer Methods for Privacy Provision in Distributed Control and Inference. Proceedings 53rd IEEE Conference on Decision and Control.
2014-09-17
Cao, Phuong, Chung, Key-whan, Kalbarczyk, Zbigniew, Iyer, Ravishankar, Slagell, Adam J..  2014.  Preemptive Intrusion Detection. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :21:1–21:2.

This paper presents a system named SPOT to achieve high accuracy and preemptive detection of attacks. We use security logs of real-incidents that occurred over a six-year period at National Center for Supercomputing Applications (NCSA) to evaluate SPOT. Our data consists of attacks that led directly to the target system being compromised, i.e., not detected in advance, either by the security analysts or by intrusion detection systems. Our approach can detect 75 percent of attacks as early as minutes to tens of hours before attack payloads are executed.

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2014.  Proofs from Simulations and Modular Annotations. 17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014).

We present a modular technique for simulation-based bounded verification for nonlinear dynamical systems. We introduce the notion of input-to-state discrepancy of each subsystem Ai in a larger nonlinear dynamical system A which bounds the distance between two (possibly diverging) trajectories of Ai in terms of their initial states and inputs. Using the IS discrepancy functions, we construct a low dimensional deter- ministic dynamical system M (δ). For any two trajectories of A starting δ distance apart, we show that one of them bloated by a factor determined by the trajectory of M con- tains the other. Further, by choosing appropriately small δ’s the overapproximations computed by the above method can be made arbitrarily precise. Using the above results we de- velop a sound and relatively complete algorithm for bounded safety verification of nonlinear ODEs. Our preliminary ex- periments with a prototype implementation of the algorithm show that the approach can be effective for verification of nonlinear models.

2018-05-11
Taha, Ahmad F, Elmahdi, Ahmed, Panchal, Jitesh H, Sun, Dengfeng.  2014.  Pure Time Delay Analysis for Decentralized Networked Control Systems. ASME 2014 Dynamic Systems and Control Conference. :V003T47A001–V003T47A001.
2015-05-01
Luowei Zhou, Sucheng Liu, Weiguo Lu, Shuchang Hu.  2014.  Quasi-steady-state large-signal modelling of DC #8211;DC switching converter: justification and application for varying operating conditions. Power Electronics, IET. 7:2455-2464.

Quasi-steady-state (QSS) large-signal models are often taken for granted in the analysis and design of DC-DC switching converters, particularly for varying operating conditions. In this study, the premise for the QSS is justified quantitatively for the first time. Based on the QSS, the DC-DC switching converter under varying operating conditions is reduced to the linear time varying systems model. Thereafter, the QSS concept is applied to analysis of frequency-domain properties of the DC-DC switching converters by using three-dimensional Bode plots, which is then utilised to the optimisation of the controller parameters for wide variations of input voltage and load resistance. An experimental prototype of an average-current-mode-controlled boost DC-DC converter is built to verify the analysis and design by both frequency-domain and time-domain measurements.

2018-05-23
Lian Duan, Sanjai Rayadurgam, Mats Per Erik Heimdahl, Anaheed Ayoub, Oleg Sokolsky, Insup Lee.  2014.  Reasoning About Confidence and Uncertainty in Assurance Cases: A Survey. Software Engineering in Health Care - 4th International Symposium, {FHIES} 2014, and 6th International Workshop, {SEHC} 2014, Washington, DC, USA, July 17-18, 2014, Revised Selected Papers. :64–80.
2018-05-14
Viorel Preoteasa, Stavros Tripakis.  2014.  Refinement calculus of reactive systems. 2014 International Conference on Embedded Software, {EMSOFT} 2014, New Delhi, India, October 12-17, 2014. :2:1–2:10.
2014-10-24
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis D.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE. 

2015-01-13
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing
concern for software developers and users, requirements
engineering (RE) researchers brought new insight to security
requirements. Security requirements aim to address security at
the early stages of system design while accommodating the
complex needs of different stakeholders. Meanwhile, other
research communities, such as usable privacy and security,
have also examined these requirements with specialized goal to
make security more usable for stakeholders from product
owners, to system users and administrators. In this paper we
report results from conducting a literature survey to compare
security requirements research from RE Conferences with the
Symposium on Usable Privacy and Security (SOUPS). We
report similarities between the two research areas, such as
common goals, technical definitions, research problems, and
directions. Further, we clarify the differences between these
two communities to understand how they can leverage each
other’s insights. From our analysis, we recommend new
directions in security requirements research mainly to expand
the meaning of security requirements in RE to reflect the
technological advancements that the broader field of security is
experiencing. These recommendations to encourage crosscollaboration
with other communities are not limited to the
security requirements area; in fact, we believe they can be
generalized to other areas of RE.

2015-11-18
Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Sonia Santiago, Universidad Politécnica de Valencia, Spain.  2014.  A Rewriting-based Forward Semantics for Maude-NPA. Symposium and Bootcamp on the Science of Security (HotSoS 2014).

The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool for reasoning about the security of cryptographic protocols in which the cryptosystems satisfy different equational properties. It tries to find secrecy or authentication attacks by searching backwards from an insecure attack state pattern that may contain logical variables, in such a way that logical variables become properly instantiated in order to find an initial state. The execution mechanism for this logical reachability is narrowing modulo an equational theory. Although Maude-NPA also possesses a forwards semantics naturally derivable from the backwards semantics, it is not suitable for state space exploration or protocol simulation.

In this paper we define an executable forwards semantics for Maude-NPA, instead of its usual backwards one, and restrict it to the case of concrete states, that is, to terms without logical variables. This case corresponds to standard rewriting modulo an equational theory. We prove soundness and completeness of the backwards narrowing-based semantics with respect to the rewriting-based forwards semantics. We show its effectiveness as an analysis method that complements the backwards analysis with new prototyping, simulation, and explicit-state model checking features by providing some experimental results.

2014-09-17
Escobar, Santiago, Meadows, Catherine, Meseguer, José, Santiago, Sonia.  2014.  A Rewriting-based Forwards Semantics for Maude-NPA. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :3:1–3:12.

The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool for reasoning about the security of cryptographic protocols in which the cryptosystems satisfy different equational properties. It tries to find secrecy or authentication attacks by searching backwards from an insecure attack state pattern that may contain logical variables, in such a way that logical variables become properly instantiated in order to find an initial state. The execution mechanism for this logical reachability is narrowing modulo an equational theory. Although Maude-NPA also possesses a forwards semantics naturally derivable from the backwards semantics, it is not suitable for state space exploration or protocol simulation. In this paper we define an executable forwards semantics for Maude-NPA, instead of its usual backwards one, and restrict it to the case of concrete states, that is, to terms without logical variables. This case corresponds to standard rewriting modulo an equational theory. We prove soundness and completeness of the backwards narrowing-based semantics with respect to the rewriting-based forwards semantics. We show its effectiveness as an analysis method that complements the backwards analysis with new prototyping, simulation, and explicit-state model checking features by providing some experimental results.