Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021-11-29
Sagar, Subhash, Mahmood, Adnan, Sheng, Quan Z., Zhang, Wei Emma.  2020.  Trust Computational Heuristic for Social Internet of Things: A Machine Learning-Based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
The Internet of Things (IoT) is an evolving network of billions of interconnected physical objects, such as, numerous sensors, smartphones, wearables, and embedded devices. These physical objects, generally referred to as the smart objects, when deployed in real-world aggregates useful information from their surrounding environment. As-of-late, this notion of IoT has been extended to incorporate the social networking facets which have led to the promising paradigm of the `Social Internet of Things' (SIoT). In SIoT, the devices operate as an autonomous agent and provide an exchange of information and services discovery in an intelligent manner by establishing social relationships among them with respect to their owners. Trust plays an important role in establishing trustworthy relationships among the physical objects and reduces probable risks in the decision making process. In this paper, a trust computational model is proposed to extract individual trust features in a SIoT environment. Furthermore, a machine learning-based heuristic is used to aggregate all the trust features in order to ascertain an aggregate trust score. Simulation results illustrate that the proposed trust-based model isolates the trustworthy and untrustworthy nodes within the network in an efficient manner.
2021-08-18
Mohandas, Nair Arun, Swathi, Adinath, R., Abhijith, Nazar, Ajmal, Sharath, Greeshma.  2020.  A4: A Lightweight Stream Cipher. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :573—577.
Lightweight ciphers are algorithms with low computational and spacial complexity. In the modern world of miniaturization, a lightweight cipher is used in constrained devices such as RFID tags, fire and security detectors, devices for wireless communications and other IoT devices. Stream ciphers are symmetric ciphers which encrypts the plain text bit stream with corresponding key stream to generate cipher text. Hence a stream cipher with low computational complexity and maximum security can be termed as a lightweight stream cipher. Many light weight stream ciphers are already existing. Each has its own vulnerabilities and spacial requirement. This paper has successfully developed, implemented, and analyzed a lightweight stream cipher - A4. Along with low computational cost, A4 also ensures paramount security and is less prone to the emerging cryptographic attacks.
2021-01-28
Santos, W., Sousa, G., Prata, P., Ferrão, M. E..  2020.  Data Anonymization: K-anonymity Sensitivity Analysis. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.

These days the digitization process is everywhere, spreading also across central governments and local authorities. It is hoped that, using open government data for scientific research purposes, the public good and social justice might be enhanced. Taking into account the European General Data Protection Regulation recently adopted, the big challenge in Portugal and other European countries, is how to provide the right balance between personal data privacy and data value for research. This work presents a sensitivity study of data anonymization procedure applied to a real open government data available from the Brazilian higher education evaluation system. The ARX k-anonymization algorithm, with and without generalization of some research value variables, was performed. The analysis of the amount of data / information lost and the risk of re-identification suggest that the anonymization process may lead to the under-representation of minorities and sociodemographic disadvantaged groups. It will enable scientists to improve the balance among risk, data usability, and contributions for the public good policies and practices.

2021-02-23
Krohmer, D., Schotten, H. D..  2020.  Decentralized Identifier Distribution for Moving Target Defense and Beyond. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

In this work, we propose a novel approach for decentralized identifier distribution and synchronization in networks. The protocol generates network entity identifiers composed of timestamps and cryptographically secure random values with a significant reduction of collision probability. The distribution is inspired by Unique Universal Identifiers and Timestamp-based Concurrency Control algorithms originating from database applications. We defined fundamental requirements for the distribution, including: uniqueness, accuracy of distribution, optimal timing behavior, scalability, small impact on network load for different operation modes and overall compliance to common network security objectives. An implementation of the proposed approach is evaluated and the results are presented. Originally designed for a domain of proactive defense strategies known as Moving Target Defense, the general architecture of the protocol enables arbitrary applications where identifier distributions in networks have to be decentralized, rapid and secure.

2021-03-09
Lee, T., Chang, L., Syu, C..  2020.  Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.

Hakim, A. R., Rinaldi, J., Setiadji, M. Y. B..  2020.  Design and Implementation of NIDS Notification System Using WhatsApp and Telegram. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1—4.

Network Intrusion Detection System (NIDS) can help administrators of a server in detecting attacks by analyzing packet data traffic on the network in real-time. If an attack occurs, an alert to the administrator is provided by NIDS so that the attack can be known and responded immediately. On the other hand, the alerts cannot be monitored by administrators all the time. Therefore, a system that automatically sends notifications to administrators in real-time by utilizing social media platforms is needed. This paper provides an analysis of the notification system built using Snort as NIDS with WhatsApp and Telegram as a notification platform. There are three types of attacks that are simulated and must be detected by Snort, which are Ping of Death attacks, SYN flood attacks, and SSH brute force attacks. The results obtained indicate that the system successfully provided notification in the form of attack time, IP source of the attack, source of attack port and type of attack in real-time.

2021-08-12
Shin, Sanggyu, Seto, Yoichi.  2020.  Development of IoT Security Exercise Contents for Cyber Security Exercise System. 2020 13th International Conference on Human System Interaction (HSI). :1—6.
In this paper, we discuss the development of the IoT security exercise content and the implementation of it to the CyExec. While the Internet of Things (IoT) devices are becoming more popular, vulnerability countermeasures are insufficient, and many incidents have occurred. It is because there is insufficient protection against vulnerabilities specific to IoT equipment. Also, the developers and users have low awareness of IoT devices against vulnerabilities from the past. Therefore, the importance of security education on IoT devices is increasing. However, the enormous burden of introduction and operation costs limited the use of commercial cybersecurity exercise systems. CyExec (Cyber Security Exercise System), consisting of a virtual environment using VirtualBox and Docker, is a low-cost and flexible cybersecurity exercise system, which we have proposed for the dissemination of security education. And the content of the exercises for CyExec is composed of the Basic exercises and Applied exercises.
2021-01-20
Aman, W., Haider, Z., Shah, S. W. H., Rahman, M. M. Ur, Dobre, O. A..  2020.  On the Effective Capacity of an Underwater Acoustic Channel under Impersonation Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.

2021-06-30
Sikarwar, Himani, Das, Debasis.  2020.  An Efficient Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1266—1271.
Ensuring secure transmission over the communication channel is a fundamental responsibility to achieve the implementation objective of universal internet of vehicles (UIoV) efficiently. Characteristics like highly dynamic topology and scalability of UIoV makes it more vulnerable to different types of privacy and security attacks. Considerable scope of improvement in terms of time complexity and performance can be observed within the existing schemes that address the privacy and security aspects of UIoV. In this paper, we present an improvised authentication and lightweight batch verification method for security and privacy in UIoV. The suggested method reduces the message loss rate, which occurred due to the response time delay by implementing some low-cost cryptographic operations like one-way hash function, concatenation, XOR, and bilinear map. Furthermore, the performance analysis proves that the proposed method is more reliable that reduces the computational delay and has a better performance in the delay-sensitive network as compared to the existing schemes. The experimental results are obtained by implementing the proposed scheme on a desktop-based configuration as well as Raspberry Pi 4.
2021-06-24
Chen, Sen, Fan, Lingling, Meng, Guozhu, Su, Ting, Xue, Minhui, Xue, Yinxing, Liu, Yang, Xu, Lihua.  2020.  An Empirical Assessment of Security Risks of Global Android Banking Apps. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :1310—1322.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named Ausera, which leverages static program analysis techniques and sensitive keyword identification. By leveraging Ausera, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. We further find that weaknesses derived from outdated versions of banking apps or third-party libraries are highly prone to being exploited by attackers. To date, we highlight that 21 banks have confirmed the weaknesses we reported (including 126 weaknesses in total). We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
2021-07-27
Chaudhry, Y. S., Sharma, U., Rana, A..  2020.  Enhancing Security Measures of AI Applications. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :713—716.
Artificial Intelligence also often referred to as machine learning is being labelled to as the future has been into light since more than a decade. Artificial Intelligence designated by the acronym AI has a vast scope of development and the developers have been working on with it constantly. AI is being associated with the existing objects in the world as well as with the ones that are about to arrive to improve them and make them more reliable. AI as it states in its name is intelligence, intelligence shown by the machines to work similar to humans and work on achieving the goals they are being provided with. Another application of AI could be to provide defenses against the present cyber threats, vehicle overrides etc. Also, AI might be intelligence but, in the end, it's still a bunch of codes, hence it is prone to be corrupted or misused by the world. To prevent the misuse of the technologies, it is necessary to deploy them with a sustainable defensive system as well. Obviously, there is going to be a default defense system but it is prone to be corrupted by the hackers or malfunctioning of the intelligence in certain scenarios which can result disastrous especially in case of Robotics. A proposal referred to as the “Guard Masking” has been offered in the following paper, to provide an alternative for securing Artificial Intelligence.
2021-03-04
Sejr, J. H., Zimek, A., Schneider-Kamp, P..  2020.  Explainable Detection of Zero Day Web Attacks. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :71—78.

The detection of malicious HTTP(S) requests is a pressing concern in cyber security, in particular given the proliferation of HTTP-based (micro-)service architectures. In addition to rule-based systems for known attacks, anomaly detection has been shown to be a promising approach for unknown (zero-day) attacks. This article extends existing work by integrating outlier explanations for individual requests into an end-to-end pipeline. These end-to-end explanations reflect the internal working of the pipeline. Empirically, we show that found explanations coincide with manually labelled explanations for identified outliers, allowing security professionals to quickly identify and understand malicious requests.

2021-03-15
Staicu, C.-A., Torp, M. T., Schäfer, M., Møller, A., Pradel, M..  2020.  Extracting Taint Specifications for JavaScript Libraries. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :198—209.

Modern JavaScript applications extensively depend on third-party libraries. Especially for the Node.js platform, vulnerabilities can have severe consequences to the security of applications, resulting in, e.g., cross-site scripting and command injection attacks. Existing static analysis tools that have been developed to automatically detect such issues are either too coarse-grained, looking only at package dependency structure while ignoring dataflow, or rely on manually written taint specifications for the most popular libraries to ensure analysis scalability. In this work, we propose a technique for automatically extracting taint specifications for JavaScript libraries, based on a dynamic analysis that leverages the existing test suites of the libraries and their available clients in the npm repository. Due to the dynamic nature of JavaScript, mapping observations from dynamic analysis to taint specifications that fit into a static analysis is non-trivial. Our main insight is that this challenge can be addressed by a combination of an access path mechanism that identifies entry and exit points, and the use of membranes around the libraries of interest. We show that our approach is effective at inferring useful taint specifications at scale. Our prototype tool automatically extracts 146 additional taint sinks and 7 840 propagation summaries spanning 1 393 npm modules. By integrating the extracted specifications into a commercial, state-of-the-art static analysis, 136 new alerts are produced, many of which correspond to likely security vulnerabilities. Moreover, many important specifications that were originally manually written are among the ones that our tool can now extract automatically.

2021-05-05
Bazari, Aditya Shyam, Singh, Aditya, Khan, Abdul Ahad, Jindal, Rajni.  2020.  Filter Based Scalable Blockchain for Domestic Internet of Things. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1051—1056.

With the advancements in technology, the ease of interconnectedness among devices has increased manifold, leading to the widespread usage of Internet of Things. Internet of Things has also reached our homes, often referred to as domestic Internet of Things. However, the security aspect of domestic Internet of Things has largely been under question as the increase in inter-device communication renders the system more vulnerable to adversaries. Largely popular blockchain technology is being extensively researched for integration into the Internet of Things framework in order to improve the security aspect of the framework. Blockchain, being a cryptographically linked set of data, has a few barriers which prevent it from being successfully integrated to Internet of Things. One of the major barrier is the high computational requirements and time latency associated with it. This work tries to address this research gap and proposes a novel scalable blockchain optimization for domestic Internet of Things. The proposed blockchain model uses a flow based filtering technique as an added security layer to facilitate the scenario. This work then evaluates the performance of the proposed model in various scenarios and compares it with that of traditional blockchain. The work presents a largely encompassing evaluation, explanation and assessment of the proposed model.

2021-09-17
Cheng, Xiuzhen, Chellappan, Sriram, Cheng, Wei, Sahin, Gokhan.  2020.  Guest Editorial Introduction to the Special Section on Network Science for High-Confidence Cyber-Physical Systems. IEEE Transactions on Network Science and Engineering. 7:764–765.
The papers in this special section focus on network science for high confidence cyber-physical systems (CPS) Here CPS refers to the engineered systems that can seamlessly integrate the physical world with the cyber world via advanced computation and communication capabilities. To enable high-confidence CPS for achieving better benefits as well as supporting emerging applications, network science-based theories and methodologies are needed to cope with the ever-growing complexity of smart CPS, to predict the system behaviors, and to model the deep inter-dependencies among CPS and the natural world. The major objective of this special section is to exploit various network science techniques such as modeling, analysis, mining, visualization, and optimization to advance the science of supporting high-confidence CPS for greater assurances of security, safety, scalability, efficiency, and reliability. These papers bring a timely and important research topic. The challenges and opportunities of applying network science approaches to high-confidence CPS are profound and far-reaching.
Conference Name: IEEE Transactions on Network Science and Engineering
2021-03-30
Foroughi, F., Hadipour, H., Shafiee, A. M..  2020.  High-Performance Monitoring Sensors for Home Computer Users Security Profiling. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—7.

Recognising user's risky behaviours in real-time is an important element of providing appropriate solutions and recommending suitable actions for responding to cybersecurity threats. Employing user modelling and machine learning can make this process automated by requires high-performance intelligent agent to create the user security profile. User profiling is the process of producing a profile of the user from historical information and past details. This research tries to identify the monitoring factors and suggests a novel observation solution to create high-performance sensors to generate the user security profile for a home user concerning the user's privacy. This observer agent helps to create a decision-making model that influences the user's decision following real-time threats or risky behaviours.

2021-05-13
Xia, Yusheng, Chen, Rongmao, Su, Jinshu, Pan, Chen, Su, Han.  2020.  Hybrid Routing: Towards Resilient Routing in Anonymous Communication Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Anonymous communication networks (ACNs) are intended to protect the metadata during communication. As classic ACNs, onion mix-nets are famous for strong anonymity, in which the source defines a static path and wraps the message multi-times with the public keys of nodes on the path, through which the message is relayed to the destination. However, onion mix-nets lacks in resilience when the static on-path mixes fail. Mix failure easily results in message loss, communication failure, and even specific attacks. Therefore, it is desirable to achieve resilient routing in onion mix-nets, providing persistent routing capability even though node failure. The state-of-theart solutions mainly adopt mix groups and thus need to share secret keys among all the group members which may cause single point of failure. To address this problem, in this work we propose a hybrid routing approach, which embeds the onion mix-net with hop-by-hop routing to increase routing resilience. Furthermore, we propose the threshold hybrid routing to achieve better key management and avoid single point of failure. As for experimental evaluations, we conduct quantitative analysis of the resilience and realize a local T-hybrid routing prototype to test performance. The experimental results show that our proposed routing strategy increases routing resilience effectively, at the expense of acceptable latency.

2021-04-27
Sasubilli, S. M., Dubey, A. K., Kumar, A..  2020.  Hybrid security analysis based on intelligent adaptive learning in Big Data. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1—5.

Big data provides a way to handle and analyze large amount of data or complex set. It provides a systematic extraction also. In this paper a hybrid security analysis based on intelligent adaptive learning in big data has been discussed with the current trends. This paper also explores the possibility of cloud computing collaboration with big data. The advantages along with the impact for the overall platform evaluation has been discussed with the traditional trends. It has been useful in the analysis and the exploration of future research. This discussion also covers the computational variability and the connotation in terms of data reliability, availability and management in big data with data security aspects.

2021-08-18
Aiswarya Meenakshi, P., Veera Santhya, R., Sherine Jenny, R., Sudhakar, R..  2020.  Implementation and Cryptanalysis of Lightweight Block Ciphers. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :253—258.
Encryption has become an important need for each and every data transmission. Large amount of delicate data is transferred regularly through different computer networks such as e-banking, email applications and file exchange. Cryptanalysis is study of analyzing the hidden information in the system. The process of cryptanalysis could be done by various features such as power, sound, electromagnetic radiation etc. Lightweight cryptography plays an important role in the IoT devices. It includes various appliances, vehicles, smart sensors and RFID-tags (RFID). PRESENT is one such algorithm, designed for resource constrained devices. This requires less memory and consumes less power. The project propounds a model in which the cryptographic keys are analyzed by the trace of power.
2021-03-15
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

2021-09-07
Sanjeetha, R., Srivastava, Shikhar, Kanavalli, Anita, Pattanaik, Ashutosh, Gupta, Anshul.  2020.  Mitigation of Combined DDoS Attack on SDN Controller and Primary Server in Software Defined Networks Using a Priority on Traffic Variation. 2020 International Conference for Emerging Technology (INCET). :1–5.
A Distributed Denial of Service ( DDoS ) attack is usually instigated on a primary server that provides important services in a network. However such DDoS attacks can be identified and mitigated by the controller in a Software Defined Network (SDN). If the intruder further performs an attack on the controller along with the server, the attack becomes successful.In this paper, we show how such a combined DDoS attack can be instigated on a controller as well as a primary server. The DDoS attack on the primary server is instigated by compromising few hosts to send packets with spoofed IP addresses and the attack on the controller is instigated by compromising few switches to send flow table requests repeatedly to the controller. With the help of an emulator called mininet, we show the severity of this attack on the performance of the network. We further propose a common technique that can be used to mitigate this kind of attack by observing the variation of destination IP addresses and setting different priorities to switches and handling the flow table requests accordingly by the controller.
2021-03-29
Moreno, R. T., Rodríguez, J. G., López, C. T., Bernabe, J. B., Skarmeta, A..  2020.  OLYMPUS: A distributed privacy-preserving identity management system. 2020 Global Internet of Things Summit (GIoTS). :1—6.

Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.

2021-04-27
reddy, S. V. Siva, Saravanan, S..  2020.  Performance Evaluation of Classification Algorithms in the Design of Apache Spark based Intrusion Detection System. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :443—447.

Information security is a process of securing data from security breaches, hackers. The program of intrusion detection is a software framework that keeps tracking and analyzing the data in the network to identify the attacks by using traditional techniques. These traditional intrusion techniques work very efficient when it uses on small data. but when the same techniques used for big data, process of analyzing the data properties take long time and become not efficient and need to use the big data technologies like Apache Spark, Hadoop, Flink etc. to design modern Intrusion Detection System (IDS). In this paper, the design of Apache Spark and classification algorithm-based IDS is presented and employed Chi-square as a feature selection method for selecting the features from network security events data. The performance of Logistic Regression, Decision Tree and SVM is evaluated with SGD in the design of Apache Spark based IDS with AUROC and AUPR used as metrics. Also tabulated the training and testing time of each algorithm and employed NSL-KDD dataset for designing all our experiments.

2021-09-01
Hussain, Iqra, Pandey, Nitin, Singh, Ajay Vikram, Negi, Mukesh Chandra, Rana, Ajay.  2020.  Presenting IoT Security based on Cryptographic Practices in Data Link Layer in Power Generation Sector. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1085—1088.
With increasing improvements in different areas, Internet control has been making prominent impacts in almost all areas of technology that has resulted in reasonable advances in every discrete field and therefore the industries too are proceeding to the field of IoT (Internet of Things), in which the communication among heterogeneous equipments is via Internet broadly. So imparting these advances of technology in the Power Station Plant sectors i.e. the power plants will be remotely controlled additional to remote monitoring, with no corporal place as a factor for controlling or monitoring. But imparting this technology the security factor needs to be considered as a basic and such methods need to be put into practice that the communication in such networks or control systems is defended against any third party interventions while the data is being transferred from one device to the other device through the internet (Unrestricted Channel). The paper puts forward exercising RSA,DES and AES encrypting schemes for the purpose of data encryption at the Data Link Layer i.e. before it is transmitted to the other device through Internet and as a result of this the security constraints are maintained. The records put to use have been supplied by NTPC, Dadri, India plus simulation part was executed employing MATLAB.
2021-07-08
Cesconetto, Jonas, Silva, Luís A., Valderi Leithardt, R. Q., Cáceres, María N., Silva, Luís A., Garcia, Nuno M..  2020.  PRIPRO:Solution for user profile control and management based on data privacy. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
Intelligent environments work collaboratively, bringing more comfort to human beings. The intelligence of these environments comes from technological advances in sensors and communication. IoT is the model developed that allows a wide and intelligent communication between devices. Hardware reduction of IoT devices results in vulnerabilities. Thus, there are numerous concerns regarding the security of user information, since mobile devices are easily trackable over the Internet. Care must be taken regarding the information in user profiles. Mobile devices are protected by a permission-based mechanism, which limits third-party applications from accessing sensitive device resources. In this context, this work aims to present a proposal for materialization of application for the evolution of user profiles in intelligent environments. Having as parameters the parameters presented in the proposed taxonomy. The proposed solution is the development of two applications, one for Android devices, responsible for allowing or blocking some features of the device. And another in Cloud, responsible for imposing the parameters and privacy criteria, formalizing the profile control module (PRIPRO - PRIvacy PROfiles).